مدیریت پساب آبزیپروری برای تولید پایدار: روشهای حذف ترکیبات نیتروژن
محورهای موضوعی :
آلودگی محیط زیست (آب و فاضلاب)
محمدحسین خانجانی
1
,
علیرضا محمدی
2
1 - گروه علوم و مهندسی شیلات، دانشکده منابع طبیعی، دانشگاه جیرفت، جیرفت، کرمان، ایران
2 - گروه علوم و مهندسی محیط زیست، دانشکده منابع طبیعی، دانشگاه جیرفت، جیرفت، کرمان، ایران
تاریخ دریافت : 1397/12/21
تاریخ پذیرش : 1398/06/02
تاریخ انتشار : 1400/10/01
کلید واژه:
مواد زائد نیتروژندار,
آبزیپروری,
تصفیه پساب,
تعویض آب,
روش زیستی- شیمیایی,
چکیده مقاله :
زمینه و هدف: آبزی پروری یکی از سریع ترین بخش های در حال رشد کشاورزی در جهان امروز می باشد. توسعه متراکم صنعت آبزی پروری با افزایش اثرات زیست محیطی همراه بوده است. فرآیند تولید، مقدار قابل توجهی از پساب آلوده شامل غذاهای خورده نشده و مدفوع را ایجاد می کند. پساب آبزی پروری شامل مواد مغذی، ترکیبات آلی و غیرآلی مثل ترکیبات نیتروژن (آمونیاک، نیتریت، نیترات)، فسفر، کربن آلی و مواد آلی که به محیط زیست آبزی وارد می شود. آمونیاک بعنوان ماده دفعی آبزیان و از طریق تجزیه مواد آلی اضافی تولید می شود، باکتری های شیمواتوتروف (نیتروزموناس و نیتروباکتر) تمایل به اکسید آمونیاک به نیتریت و نیترات دارند. امروزه توجه به سیستم های آبزی پروری بسته به دلیل امنیت بیشتر زیستی و مزایای زیست محیطی در حال افزایش است. هنگامی که آب در سیستم های پرورشی مدار بسته به صورت چرخه ای مورد استفاده مجدد قرار می گیرد برخی از خطرات مانند ورود پاتوژن ها و گونه های بیگانه به سیستم پرورش و مشکلات مربوط به تخلیه آب زائد که باعث ایجاد آلودگی های زیست محیطی می گردد، کاهش می یابد. در مطالعه حاضر روش های حذف ترکیبات نیتروژن غیرآلی در آبزی پروری مورد بررسی قرار گرفت.
روش بررسی: این پژوهش از نظر ماهیت مروری است که با استفاده از مرور منابع علمی به بررسی موضوع پرداخته است.
یافته ها: معمولترین روش های حذف مواد زائد نیتروژن دار در سیستم آبزی پروری، شامل تعویض آب، هوادهی، قطع غذادهی، استفاده از ماده معدنی زئولیت و کنترل زیستی است.
بحث و نتیجه گیری: مناسب ترین روش برای کنترل ترکیبات نیتروژن غیرآلی، مصرف و کاهش نیتروژن در همان محل پرورش توسط باکتری ها (روش زیستی - شیمیایی) می باشد.
چکیده انگلیسی:
Background and Objectives: Aquaculture is one of the fastest growing sectors of agriculture in the world today. The intensive development of the aquaculture industry has been accompanied by an increase in environmental impacts. The production process generates substantial amounts of polluted effluent, containing uneaten feed and feces. Discharges from aquaculture into the aquatic environment contain nutrients, various organic and inorganic compounds such as nitrogenous compounds (ammonium, nitrite, and nitrate), phosphorus, dissolved organic carbon and organic matter. Ammonia (NH3) is the product of fish respiration and decomposition of excess organic matter. Chemoautotrophic bacteria (Nitrosomonas and Nitrobacter) tend to oxidize ammonium ions to nitrite and nitrate ions. Interest in closed aquaculture systems is increasing, mostly due to biosecurity, environmental and marketing advantages over conventional extensive and semi-intensive systems. When water is reused, some risks such as pathogen introduction, escapement of exotic species and discharging of waste water (pollution) are reduced and even eliminated. In current review, we will discuss on inorganic nitrogen removal techniques in aquaculture.
Materials and Methodology: This research is in terms of the nature of the review, which has studied the subject by reviewing scientific sources.
Results: The most common way to remove nitrogenous waste material in aquaculture system, is including; water exchange, aeration, cut off feeding, use of zeolite mineral and the biological control.Discussion and Conclusion: the most suitable method for controlling inorganic nitrogen compounds is consumption and reduction of nitrogen in the same place by bacteria (biochemical method).
منابع و مأخذ:
Avinmelech, Y., Ritvo, G., 2003. Shrimp and fish pond soils: processes and management. Aquaculture, Vol. 220, pp. 549-567.
Avnimelech, Y., 2007. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264, pp. 140-147.
Avnimelech, Y., 2009. Biofloc Technology: A Practical Guide Book. World Aquaculture Society, Baton Rouge, Louisiana, USA. 182 p.
Avnimelech, Y., 2012. Biofloc Technology: A Practical Guide Book, 2nd Edition. The World Aquaculture Society, Baton Rouge, Louisiana, United States.
Boyd, C.E., 1985. Chemical budget for channel cat fish ponds. Trans. Amer. Fisheries Society, Vol. 114, pp. 291-298.
Boyd, C.E., 1998. Pond water aeration systems. Aquacultural Engineering. 18, 9–40.
Boyd, C.E., Teichert-Coddington, D., 1995. Dry matter, ash and elemental composition of pond cultured Penaeus vannamei and Penaeus stylirostris. Journal of the World Aquaculture Society, Vol. 26, pp. 88-92.
Boyd, C.E., Tucker, C.S., 2009. Pond aquaculture water quality management, Springer international editor, 700 pp.
Boyd, C.E., Zimmermann, S., 2000. Grow out systems - Water quality and soil management. In: Freshwater Prawn Culture (The farming of Macrobrachium rosenbergii, (Eds. New, M. B. and Valenti, W. C). pp. 221-238.
Brock, J.A., Main, K.L., 1994. A guide to the common problems and disease of cultured Penaeus vannamei. The World Aquaculture Society, Baton Rouge. 242pp.
Brune, D.E., Schwartz, G., Eversole, A.G., Collier, J.A., Schwedler, T.E. 2003. Intensification of pond aquaculture and high rate photosynthetic systems. Aquacultural Engineering, Vol. 28, pp. 65-86.
Chiayvareesajja, S. and Boyd, C.E. 1993. Effects of Zeolite, formalin, bacterial augmentation, and areation on total amonia nitrogen concentration. Aquaculture, Vol. 116, pp. 33-45.
Colt, J., 2006. Water quality requirements for reuse systems. Aquacultural Engineering. Vol. 34, pp. 143–156.
Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P., Verstraete, W., 2007. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, Vol. 270, pp. 1–14.
De Schryver, P., Crab R., Defoirdt T., Boon N. and Verstraete W., 2008. The basics of bio-flocs technology: the added value for aquaculture. Aquaculture, Vol. 277, pp. 125–137.
Diab, S., Cochaba, M., Mires, D., Avnimelech, Y., 1992. Combined intensive–extensive (CIE) pond system, A: inorganic nitrogen transformations. Aquaculture, Vol. 101, pp. 33–39.
Ebeling, J.M., Timmons, M.B., Bisogni, J. J., 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic control of ammonia-nitrogen in aquaculture production systems. Aquaculture, Vol. 257, pp. 346–358.
El Samra, M.I., Olàh, J., 1979. Significance of nitrogen fixation in fish ponds. Aquaculture, Vol. 18, pp. 367–372.
Ferrer, J., Seco, A., 2007. Tratamientos biológicos de aguas residuales. Editorial UPV. Valencia, Spain, PP.184.
Franco-Nava, M.A., Blancheton, J.P., Deviller, G., Charrier, A., Le-Gall, J.Y., 2004. Effect of fish size and hydraulic regime on particulate organic matter dynamics in a recirculating aquaculture system: elemental carbon and nitrogen approach. Aquaculture, Vol. 239, pp. 179–198.
Funge- Smith, S.J., Briggs, M.R.P. 1998. Nutrient budgets in intensive shrimp ponds, implications for sustainability. Aquaculture, Vol. 164, pp.117-133.
Gao L., Shan, H.W., Zhang, T.W., Bao, W.Z., Ma, S.J., 2012. Effects of carbohydrate addition on Litopenaeus vannamei intensive culture in a zero-water exchange system. Aquaculture, 342, pp. 89–96.
Grommen, R., Van Hauteghem, I., Van Wambeke, M., Verstraete, W., 2002. An improved nitrifying enrichment to remove ammonium and nitrite from freshwater aquaria systems. Aquaculture, 211, 115–124.
Hepher, B., 1985. Aquaculture intensification under land and water limitations. Geo Journal, 10(3), 253-259.
Hertrampf, J.W., Piedad-Pascual, F., 2000. Handbook on Ingredients for Aquaculture Feeds. Kluwer Academic Publishers, Dordrecht, The Netherlands. 624 pp.
Islam, M. and Braden, J.B., 2006. “Bio-Economic Development of Floodplains: Farming versus Fishing in Bangladesh,” Environment and Development Economics, Vol. 11, No. 1, pp. 95-126. http://dx.doi.org/10.1017/S1355770X0500269X.
Islam, M.S., 2008. “From Pond to Plate: Towards a Twin- Driven Commodity Chain in Bangladesh Shrimp Aqua- culture,” Food Policy, Vol. 33, No. 3, pp. 209-223. http://dx.doi.org/10.1016/j.foodpol.2007.10.002.
Jensen, F.B., 2003. Nitrite disrupts multiple physiological functions in aquatic animals. Comparative Biochemistry and Physiology, Vol. 135, pp. 9-24.
Jiménez-Montealegre, R.,Verdegem, M.C.J., van Dam,A.,Verreth, J.A.J., 2002. Conceptualization and validation of a dynamic model for the simulation of nitrogen transformations and fluxes in fish ponds. Ecological Modelling, Vol. 147, pp. 123–152.
Krummenauer, D., Samocha, T., Poersch, L., Lara, G., Wasielesky, W.Jr., 2014. The reuse of water on the culture of pacific white shrimp, Litopenaeus vannamei, in BFT system. Journal of the World Aquaculture Society, Vol. 45, pp. 3-14.
Khanjani, M.H., Sajjadi, M.M., Alizadeh, M. and Sourinejad, I., 2017. Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquaculture Research, 48, pp. 1491-1501.
Khanjani, M.H., Sajjadi, M.M., Alizadeh, M., Sourinejad, I., 2016. Study on nursery growth performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) under different feeding levels in zero water exchange system. Iranian Journal of Fisheries Sciences, Vol. 15, pp. 1465-1484.
Khanjani, M.H., Sajjadi, M.M., Alizadeh, M., Sourinejad, I., 2015. Effect of different feeding levels on water quality, growth performance and survival of western white shrimp (Litopenaeus vannamei boone, 1931) post larvae with application of biofloc technology. Iranian Scientific Fisheries Journal, Vol. 24, pp. 13-28. (In Persian).
Khanjani, M.H., Sajjadi, M.M., Alizadeh, M., Sourinejad, I., 2016. Production and evaluation of biofloc for use in zero- water exchange rearing system, Journal of Aquaculture Development, Vol. 10, pp. 33-40. (In Persian).
Kuhn, D.D., Lawrence, A.L., Boardman, G.D., Patnaik, S., Marsh, L., Flick, G.J., 2010. Evaluation of two types of biofloc derived from biological treatment of fish effluent as feed ingredients for Pacific white shrimp, Litopenaeus vannamei. Aquaculture, Vol. 303, pp. 28–33.
Lemonnier, H., Brizard, R., 1998. Effect of water exchange on pond ecosystem in shrimp semi- intensive rearing in New Caledonia during cold season, Ifremer, Noumea, New Caledonia, 49pp.
Lin, C.K., Nash, G.L. 1996. Asian shrimp news collected columns, 1989-1995, Asian shrimp culture council, Bangkok, Thailand.
Liu, L., Hu, Z., Dai, X., Avnimelech, Y., 2014. Effects of addition of maize starch on the yield, water quality and formation of bioflocs in an integrated shrimp culture system. Aquaculture, Vol. 418–419, pp. 79–86.
Lyssenko, C., Wheaton, F., 2006. Impact of positive ramp short-term operating disturbances on ammonia removal by trickling and submerged- upflow biofilters for intensive recirculating aquaculture. Aquacultural Engineering, Vol. 35, pp. 26–37.
Mallasen, M. and Valenti, W.C., 2006. Effect of nitrite on larval development of the giant river prawn, Macrobrachium rosenbergii. Aquaculture, Vol. 261, pp. 1292-1298.
Marking, L.L. and Bills, T.D. 1982. Factors affecting the efficiency of clinoptilolite for removing ammonia from water. Progressive fish- culture. Vol. 44, pp. 187- 189.
Mohan, B. S. & Hosetti, B. B. (1999) Aquatic Plants for Toxicity Assessment. Environmental Research, 81, pp. 259-274.
Muthuwani, V., Lin, C.K., 1995. Water quality and nutrient budget in intensive shrimp culture ponds. Wold Aquaculture 96, Book of abstracts, Word Aquaculture Society, Banton Rouge, LA. USA 270pp.
Naylor, R.L., Goldburg, R.J., Primavera, J.H., Kautsky, N., Beveridge, M.C.M., Clay, J., Folke, C., Lubchenco, J., Mooney, H. and Troell, M., 2000. Effect of aquaculture on world fish supplies. Nature, Vol. 405, pp. 1017 -1024.
Neiland, A.E., Soley, N. Varley, J.B., Whitmarsh, D.J., 2001. “Shrimp Aquaculture: Economic Perspectives for Policy Development,” Marine Policy, Vol. 25, No. 4, pp. 265-279. http://dx.doi.org/10.1016/S0308-597X(01)00017-3.
Paez-Osuna, F., Guerro- Galvan, S.R., Ruiz- Fernandes, A.C., 1999. Discharge of nutrients from shrimp farming to coastal waters of the Gulf of California. Marine Pollution Bulletin, Vol. 38, pp. 585-592.
Paez-Osuna, F., Guerro- Galvan, S.R., Ruiz- Fernandes, A.C., Espioza- Angulo, R.E., 1997. Fluxes and mass balances of nutrients in semi- intensive shrimp fram in north- western Mexico. Marine Pollution Bulletin, Vol. 34, pp. 290-297.
Ray, A., 2012. Biofloc technology for super-intensive shrimp culture. In: Avnimelech, Y, Biofloc Technology - a practical guide book, 2nd ed., The World Aquaculture Society, Baton Rouge, Louisiana, USA. pp. 167-188.
Ritvo, G., Dixon, J. B., Lawrence, A. L., Neill, W.H., Speed, M.F., 1998. Accumulation of chemical elements in Texas shrimp pond soils. Journal of the world Aquaculture Society, Vol. 29, pp. 422-431.
Sa, D.T., Sousa, R.R.De., Rocha, I.R.C.B., Lima, G.C.De. and Costa, F.H.F., 2013. Brackish shrimp farming in northeastern brazil: the environmental and socio-economic impacts and sustainability, Natural Resources, Vol. 4, pp. 538-550.
Soleimani, M., Ansari, A., Haj Abbassi, M.A., Abedi, J., 2008. “Investigation of nitrate and ammonium removal from groundwater by mineral filters.” Journal of Water and Wastewater, 67, pp. 18-26. (In Persian)
Sousa, O. V., Macrae, A., Menezes, F. G. R., Go- mes, N. C. M., Vieira, R. H. S. F., Mendonça-Hagler, L. C. S. 2006. “The Impact of Shrimp Farming Effluent on Bacterial Communities in Mangrove Waters, Ceará, Brazil,” Marine Pollution Bulletin, Vol. 52, No. 12, pp. 1725- 1734.http://dx.doi.org/10.1016/j.marpolbul.2006.07.006.
Tacon, A.G.J. and Forster, I.P., 2003. Aqua feed and the environment: policy implications. Aquaculture, Vol. 226, pp. 181-189.
Thompson, F.L., Abreu, P.C., Wasielesky, W., 2002. Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture, Vol. 203, pp. 263–278.
Timmons, M.B., Ebeling, J.M., Wheaton, F.W., Summerfelt, S.T. and Vinci, B.J., 2002. Recirculating Aquaculture Systems. 2nd ed. Cayuga Aqua Ventures, New York, USA.
Torres-Beristain, B., Verdegem, M., Kerepeczki, E., Verreth, J., 2006. Decomposition of high protein aquaculture feed under variable oxic conditions. Water Research, Vol. 40, pp. 1341–1350.
Turker, H., Eversole, A.G., Brune, D., 2003. Comparative Nile tilapia and silver carp filtration rates of Partitioned Aquaculture System phytoplankton. Aquaculture, Vol. 220, pp. 449–457.
Valenti, W.C. and Daniels, W.H., 2000. Recirculation hatchery systems and management. In: New, M.B., Valenti, W.C. (Eds), Freshwater Prawn Culture. Blackwell, Oxford. pp. 69- 90.
Wheaton, F.W, 1977. Aquacultural engineering, John Wiley & Sons, New York, 708p.
Zhou,G. J., Ying, G. G., Liu, S., Zhou, L.J., Chen, Z.F. and Peng, F.Q., 2014. Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae. Environmental Science Processes & Impacts, 16, pp. 2018–2027.
_||_
Avinmelech, Y., Ritvo, G., 2003. Shrimp and fish pond soils: processes and management. Aquaculture, Vol. 220, pp. 549-567.
Avnimelech, Y., 2007. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264, pp. 140-147.
Avnimelech, Y., 2009. Biofloc Technology: A Practical Guide Book. World Aquaculture Society, Baton Rouge, Louisiana, USA. 182 p.
Avnimelech, Y., 2012. Biofloc Technology: A Practical Guide Book, 2nd Edition. The World Aquaculture Society, Baton Rouge, Louisiana, United States.
Boyd, C.E., 1985. Chemical budget for channel cat fish ponds. Trans. Amer. Fisheries Society, Vol. 114, pp. 291-298.
Boyd, C.E., 1998. Pond water aeration systems. Aquacultural Engineering. 18, 9–40.
Boyd, C.E., Teichert-Coddington, D., 1995. Dry matter, ash and elemental composition of pond cultured Penaeus vannamei and Penaeus stylirostris. Journal of the World Aquaculture Society, Vol. 26, pp. 88-92.
Boyd, C.E., Tucker, C.S., 2009. Pond aquaculture water quality management, Springer international editor, 700 pp.
Boyd, C.E., Zimmermann, S., 2000. Grow out systems - Water quality and soil management. In: Freshwater Prawn Culture (The farming of Macrobrachium rosenbergii, (Eds. New, M. B. and Valenti, W. C). pp. 221-238.
Brock, J.A., Main, K.L., 1994. A guide to the common problems and disease of cultured Penaeus vannamei. The World Aquaculture Society, Baton Rouge. 242pp.
Brune, D.E., Schwartz, G., Eversole, A.G., Collier, J.A., Schwedler, T.E. 2003. Intensification of pond aquaculture and high rate photosynthetic systems. Aquacultural Engineering, Vol. 28, pp. 65-86.
Chiayvareesajja, S. and Boyd, C.E. 1993. Effects of Zeolite, formalin, bacterial augmentation, and areation on total amonia nitrogen concentration. Aquaculture, Vol. 116, pp. 33-45.
Colt, J., 2006. Water quality requirements for reuse systems. Aquacultural Engineering. Vol. 34, pp. 143–156.
Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P., Verstraete, W., 2007. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, Vol. 270, pp. 1–14.
De Schryver, P., Crab R., Defoirdt T., Boon N. and Verstraete W., 2008. The basics of bio-flocs technology: the added value for aquaculture. Aquaculture, Vol. 277, pp. 125–137.
Diab, S., Cochaba, M., Mires, D., Avnimelech, Y., 1992. Combined intensive–extensive (CIE) pond system, A: inorganic nitrogen transformations. Aquaculture, Vol. 101, pp. 33–39.
Ebeling, J.M., Timmons, M.B., Bisogni, J. J., 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic control of ammonia-nitrogen in aquaculture production systems. Aquaculture, Vol. 257, pp. 346–358.
El Samra, M.I., Olàh, J., 1979. Significance of nitrogen fixation in fish ponds. Aquaculture, Vol. 18, pp. 367–372.
Ferrer, J., Seco, A., 2007. Tratamientos biológicos de aguas residuales. Editorial UPV. Valencia, Spain, PP.184.
Franco-Nava, M.A., Blancheton, J.P., Deviller, G., Charrier, A., Le-Gall, J.Y., 2004. Effect of fish size and hydraulic regime on particulate organic matter dynamics in a recirculating aquaculture system: elemental carbon and nitrogen approach. Aquaculture, Vol. 239, pp. 179–198.
Funge- Smith, S.J., Briggs, M.R.P. 1998. Nutrient budgets in intensive shrimp ponds, implications for sustainability. Aquaculture, Vol. 164, pp.117-133.
Gao L., Shan, H.W., Zhang, T.W., Bao, W.Z., Ma, S.J., 2012. Effects of carbohydrate addition on Litopenaeus vannamei intensive culture in a zero-water exchange system. Aquaculture, 342, pp. 89–96.
Grommen, R., Van Hauteghem, I., Van Wambeke, M., Verstraete, W., 2002. An improved nitrifying enrichment to remove ammonium and nitrite from freshwater aquaria systems. Aquaculture, 211, 115–124.
Hepher, B., 1985. Aquaculture intensification under land and water limitations. Geo Journal, 10(3), 253-259.
Hertrampf, J.W., Piedad-Pascual, F., 2000. Handbook on Ingredients for Aquaculture Feeds. Kluwer Academic Publishers, Dordrecht, The Netherlands. 624 pp.
Islam, M. and Braden, J.B., 2006. “Bio-Economic Development of Floodplains: Farming versus Fishing in Bangladesh,” Environment and Development Economics, Vol. 11, No. 1, pp. 95-126. http://dx.doi.org/10.1017/S1355770X0500269X.
Islam, M.S., 2008. “From Pond to Plate: Towards a Twin- Driven Commodity Chain in Bangladesh Shrimp Aqua- culture,” Food Policy, Vol. 33, No. 3, pp. 209-223. http://dx.doi.org/10.1016/j.foodpol.2007.10.002.
Jensen, F.B., 2003. Nitrite disrupts multiple physiological functions in aquatic animals. Comparative Biochemistry and Physiology, Vol. 135, pp. 9-24.
Jiménez-Montealegre, R.,Verdegem, M.C.J., van Dam,A.,Verreth, J.A.J., 2002. Conceptualization and validation of a dynamic model for the simulation of nitrogen transformations and fluxes in fish ponds. Ecological Modelling, Vol. 147, pp. 123–152.
Krummenauer, D., Samocha, T., Poersch, L., Lara, G., Wasielesky, W.Jr., 2014. The reuse of water on the culture of pacific white shrimp, Litopenaeus vannamei, in BFT system. Journal of the World Aquaculture Society, Vol. 45, pp. 3-14.
Khanjani, M.H., Sajjadi, M.M., Alizadeh, M. and Sourinejad, I., 2017. Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquaculture Research, 48, pp. 1491-1501.
Khanjani, M.H., Sajjadi, M.M., Alizadeh, M., Sourinejad, I., 2016. Study on nursery growth performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) under different feeding levels in zero water exchange system. Iranian Journal of Fisheries Sciences, Vol. 15, pp. 1465-1484.
Khanjani, M.H., Sajjadi, M.M., Alizadeh, M., Sourinejad, I., 2015. Effect of different feeding levels on water quality, growth performance and survival of western white shrimp (Litopenaeus vannamei boone, 1931) post larvae with application of biofloc technology. Iranian Scientific Fisheries Journal, Vol. 24, pp. 13-28. (In Persian).
Khanjani, M.H., Sajjadi, M.M., Alizadeh, M., Sourinejad, I., 2016. Production and evaluation of biofloc for use in zero- water exchange rearing system, Journal of Aquaculture Development, Vol. 10, pp. 33-40. (In Persian).
Kuhn, D.D., Lawrence, A.L., Boardman, G.D., Patnaik, S., Marsh, L., Flick, G.J., 2010. Evaluation of two types of biofloc derived from biological treatment of fish effluent as feed ingredients for Pacific white shrimp, Litopenaeus vannamei. Aquaculture, Vol. 303, pp. 28–33.
Lemonnier, H., Brizard, R., 1998. Effect of water exchange on pond ecosystem in shrimp semi- intensive rearing in New Caledonia during cold season, Ifremer, Noumea, New Caledonia, 49pp.
Lin, C.K., Nash, G.L. 1996. Asian shrimp news collected columns, 1989-1995, Asian shrimp culture council, Bangkok, Thailand.
Liu, L., Hu, Z., Dai, X., Avnimelech, Y., 2014. Effects of addition of maize starch on the yield, water quality and formation of bioflocs in an integrated shrimp culture system. Aquaculture, Vol. 418–419, pp. 79–86.
Lyssenko, C., Wheaton, F., 2006. Impact of positive ramp short-term operating disturbances on ammonia removal by trickling and submerged- upflow biofilters for intensive recirculating aquaculture. Aquacultural Engineering, Vol. 35, pp. 26–37.
Mallasen, M. and Valenti, W.C., 2006. Effect of nitrite on larval development of the giant river prawn, Macrobrachium rosenbergii. Aquaculture, Vol. 261, pp. 1292-1298.
Marking, L.L. and Bills, T.D. 1982. Factors affecting the efficiency of clinoptilolite for removing ammonia from water. Progressive fish- culture. Vol. 44, pp. 187- 189.
Mohan, B. S. & Hosetti, B. B. (1999) Aquatic Plants for Toxicity Assessment. Environmental Research, 81, pp. 259-274.
Muthuwani, V., Lin, C.K., 1995. Water quality and nutrient budget in intensive shrimp culture ponds. Wold Aquaculture 96, Book of abstracts, Word Aquaculture Society, Banton Rouge, LA. USA 270pp.
Naylor, R.L., Goldburg, R.J., Primavera, J.H., Kautsky, N., Beveridge, M.C.M., Clay, J., Folke, C., Lubchenco, J., Mooney, H. and Troell, M., 2000. Effect of aquaculture on world fish supplies. Nature, Vol. 405, pp. 1017 -1024.
Neiland, A.E., Soley, N. Varley, J.B., Whitmarsh, D.J., 2001. “Shrimp Aquaculture: Economic Perspectives for Policy Development,” Marine Policy, Vol. 25, No. 4, pp. 265-279. http://dx.doi.org/10.1016/S0308-597X(01)00017-3.
Paez-Osuna, F., Guerro- Galvan, S.R., Ruiz- Fernandes, A.C., 1999. Discharge of nutrients from shrimp farming to coastal waters of the Gulf of California. Marine Pollution Bulletin, Vol. 38, pp. 585-592.
Paez-Osuna, F., Guerro- Galvan, S.R., Ruiz- Fernandes, A.C., Espioza- Angulo, R.E., 1997. Fluxes and mass balances of nutrients in semi- intensive shrimp fram in north- western Mexico. Marine Pollution Bulletin, Vol. 34, pp. 290-297.
Ray, A., 2012. Biofloc technology for super-intensive shrimp culture. In: Avnimelech, Y, Biofloc Technology - a practical guide book, 2nd ed., The World Aquaculture Society, Baton Rouge, Louisiana, USA. pp. 167-188.
Ritvo, G., Dixon, J. B., Lawrence, A. L., Neill, W.H., Speed, M.F., 1998. Accumulation of chemical elements in Texas shrimp pond soils. Journal of the world Aquaculture Society, Vol. 29, pp. 422-431.
Sa, D.T., Sousa, R.R.De., Rocha, I.R.C.B., Lima, G.C.De. and Costa, F.H.F., 2013. Brackish shrimp farming in northeastern brazil: the environmental and socio-economic impacts and sustainability, Natural Resources, Vol. 4, pp. 538-550.
Soleimani, M., Ansari, A., Haj Abbassi, M.A., Abedi, J., 2008. “Investigation of nitrate and ammonium removal from groundwater by mineral filters.” Journal of Water and Wastewater, 67, pp. 18-26. (In Persian)
Sousa, O. V., Macrae, A., Menezes, F. G. R., Go- mes, N. C. M., Vieira, R. H. S. F., Mendonça-Hagler, L. C. S. 2006. “The Impact of Shrimp Farming Effluent on Bacterial Communities in Mangrove Waters, Ceará, Brazil,” Marine Pollution Bulletin, Vol. 52, No. 12, pp. 1725- 1734.http://dx.doi.org/10.1016/j.marpolbul.2006.07.006.
Tacon, A.G.J. and Forster, I.P., 2003. Aqua feed and the environment: policy implications. Aquaculture, Vol. 226, pp. 181-189.
Thompson, F.L., Abreu, P.C., Wasielesky, W., 2002. Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture, Vol. 203, pp. 263–278.
Timmons, M.B., Ebeling, J.M., Wheaton, F.W., Summerfelt, S.T. and Vinci, B.J., 2002. Recirculating Aquaculture Systems. 2nd ed. Cayuga Aqua Ventures, New York, USA.
Torres-Beristain, B., Verdegem, M., Kerepeczki, E., Verreth, J., 2006. Decomposition of high protein aquaculture feed under variable oxic conditions. Water Research, Vol. 40, pp. 1341–1350.
Turker, H., Eversole, A.G., Brune, D., 2003. Comparative Nile tilapia and silver carp filtration rates of Partitioned Aquaculture System phytoplankton. Aquaculture, Vol. 220, pp. 449–457.
Valenti, W.C. and Daniels, W.H., 2000. Recirculation hatchery systems and management. In: New, M.B., Valenti, W.C. (Eds), Freshwater Prawn Culture. Blackwell, Oxford. pp. 69- 90.
Wheaton, F.W, 1977. Aquacultural engineering, John Wiley & Sons, New York, 708p.
Zhou,G. J., Ying, G. G., Liu, S., Zhou, L.J., Chen, Z.F. and Peng, F.Q., 2014. Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae. Environmental Science Processes & Impacts, 16, pp. 2018–2027.