سنتز بیولوژیکی نانوذره نقره از قارچ آسپرژیلوس فومیگاتوس و بررسی سمیت سلولی و خواص آنتی اکسیدانتی آن
محورهای موضوعی : فیزیولوژی گیاهیفاطمه جلالیان 1 , لیلا پیشکار 2 , صاحبعلی منافی 3
1 - گروه زیست شناسی، واحد اسلامشهر، دانشگاه ازاد اسلامی، اسلامشهر، ایران
2 - گروه زیست شناسی، واحد اسلامشهر، دانشگاه ازاد اسلامی، اسلامشهر، ایران
3 - گروه مهندسی مواد سرامیک، دانشکدۀ فنی و مهندسی، دانشگاه آزاد اسلامی، واحد شاهرود، شاهرود، ایران
کلید واژه: سمیت سلولی, نانو ذرات نقره, خواص آنتی اکسیدانی, قارچ آسپرژیلوس فومیگاتوس,
چکیده مقاله :
در این تحقیق، سنتز بیولوژیکی نانو ذرات نقره با استفاده از قارچ آسپرژیلوس فومیگاتوس در آزمایشگاه بیوشیمیایی دانشگاه آزاد اسلامشهر انجام شده است و سپس، سمیت سلولی و خواص آنتی اکسیدانی نانوذرات نقره سنتز شده مورد بررسی قرار گرفت. برای اینکار، ابتدا قارچ Aspergillus Fumigatus بر روی محیط های کشت سابوراد دکستروز براث کشت داده شد و بعد از کشت، سوپرناتانت حاصل از کشت، در معرض محلول نیترات نقره با غلظت نهایی 1 میلی مولار قرار گرفته است و نانو ذرات نقره سنتز شدند. سنتز و ویژگی های نانوذرات نقره سنتز شده با عصاره قارج با روش های مختلفی از جمله اسپکتروفتومتری، پراش اشعه ایکس و میکروسکوپ الکترونی گذاره مورد تایید قرار گرفت. سپس بررسی سمیت محلول ها با روش MTT بررسی شد. نتایج به دست آمده از تحقیق حاضر نشان می دهد که نانوذرات نقره سنتز شده به شکل کروی می باشد و اندازه نانوذرات بطور متوسط بین 5 تا 40 نانومتر است. در این تحقیق، همچنین IC50 آنتی اکسیدانی 06/0 و IC50 سمیت سلولی 68/70 به دست آمد. چاهک IC50 سمیت سلولی و آنتی اکسیدانی یکسان بوده است. بنابراین می توان نتیجه گرفت که نانو ذره ی تولید شده در این پژوهش از ویژگی آنتی اکسیدانی خوبی برخوردار می باشد.
منابع
1) Alsammarraie, F.K., Wang, W., Zhou, P., Mustapha, A. and Lin, M. 2018. Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids Surfaces B: Biointerfaces. 171:398–405.
2) Cui, Y., Zhao, Y., Tian, Y., Zhang, W., Lü, X. and Jiang, X. 2012. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials. 33(7): 2327–33.
3) Elamawi, R.M., Al-Harbi, R.E. and Hendi, A.A. 2018. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egyptian Journal of Biological Pest Control. 28(1):28.
4) Ghorbani, A., Razavi, S.M., Ghasemi Omran, V.O. and Pirdashti, H. 2018a. Piriformospora indica alleviates salinity by boosting redox poise and antioxidative potential of tomato. Russian Journal of Plant Physiology. 65(6):898–907
5) Ghorbani, A., Razavi, S.M., Ghasemi Omran, V.O. and Pirdashti, H. 2018b. Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.). Plant Biology. 20(4):729–736
6) Guilger, M., Pasquoto-Stigliani, T., Bilesky-Jose, N., Grillo, R., Abhilash, P.C. and Fraceto, L.F. 2017. Biogenic silver nanoparticles based on trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity. Scientific Reports. 7:44421.
7) Kathiresan, K., Manivannan, S., Nabeel, M.A. and Dhivya, B. 2009. Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surfaces B: Biointerfaces. 71(1):133–7.
8) Kittel C. Introduction to Solid State Physics. 8 edition. Hoboken, NJ: Wiley; 2004. 704 p.
9) Li, G., He, D., Qian, Y., Guan, B., Gao, S. and Cui, Y. 2011. Fungus-mediated green synthesis of silver nanoparticles using aspergillus terreus. International Journal of Molecular Sciences. 13(1):466-476.
10) Logeswari, P., Silambarasan, S. and Abraham, J. 2013. Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties. Scientia Iranica. 20(3):1049–54.
11) Logeswari, P., Silambarasan, S. and Abraham, J. 2015. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. Journal of Saudi Chemical Society. 19(3):311-317.
12) Longoria, E., Vilchis-Nestor, A.R. and Avalos-Borja, M. 2011. Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surfaces B: Biointerfaces. 83(1):42–8.
13) Makarov, V.V., Love, A.J., Sinitsyna, O.V., Makarova, S.S., Yaminsky, I.V. and Taliansky, M.E. 2014. Green Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants. Acta Naturae. 6(1):35–44.
14) Mishra, A., Tripathy, S.K., Wahab, R., Jeong, S.H., Hwang, I. and Yang, Y.B. 2011. Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C 2 C 12 cells. Applied Microbiology and Biotechnology. 92(3):617–630.
15) Pagliacci, M.C., Spinozzi, F., Migliorati, G., Fumi, G., Smacchia, M. and Grignani, F. 1993. Genistein inhibits tumour cell growth in vitro but enhances mitochondrial reduction of tetrazolium salts: a further pitfall in the use of the MTT assay for evaluating cell growth and survival. European Journal of Cancer. 29(11):1573–7.
16) Rajan, R., Chandran, K., Harper, S.L., Yun, S.I. and Kalaichelvan, P.T. 2015. Plant extract synthesized silver nanoparticles: An ongoing source of novel biocompatible materials. Industrial Crops and Products. 70:356–373.
17) Rastogi, L., Kora, A.J. and Arunachalam, J. 2012. Highly stable, protein capped gold nanoparticles as effective drug delivery vehicles for amino-glycosidic antibiotics. Materials Science and Engineering: C. 32(6):1571–1577.
18) Rautaray, D., Sanyal, A., Adyanthaya, S.D., Ahmad, A. and Sastry, M. 2004. Biological synthesis of strontium carbonate crystals using the fungus Fusarium oxysporum. Langmuir. 20(16):6827–33.
19) Rezaei, A., Pourali, P. and Yahyayi, B. 2014. Assessment of the cytotoxicity of gold nanoparticles produced by Bacillus cereus on hepatocyte and fibroblast cell lines. Journal of Cellular and Molecular Researches. 29(3):291-301.
20) Sabatini, L., Battistelli, M., Giorgi, L., Iacobucci, M., Gobbi, L. and Andreozzi, E. 2016. Tolerance to silver of an Aspergillus fumigatus strain able to grow on cyanide containing wastes. Journal of Hazardous Materials. 306:115–123.
21) Sajjadi, G., Shojaiee, A., Fazeli, M.R., Amini, J. and Jamalifar, H. 2009. Study of ability Fusarium Oxysporum in extracellular biosynthesis of silver nanoparticle in vitro. Journal of Microbial World. 2(1):44-7.
22) Sambrook, J., Maniatis, T. and Fritsch, E.F. 1987. Laboratory CSH. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press.