Synthesis, characterization and Microwave Absorption Properties of Novel Hard-soft Ferrite and Polyaniline-loaded Nanocomposite
محورهای موضوعی :
پلیمر
Tolou Pourashraf
1
,
Mohammad Yousefi
2
,
Saeid Shokri
3
,
َAbbas Ahmadi
4
,
Parviz Aberoomand Azar
5
1 - Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
3 - Digital Transformation Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
4 - Department of Chemistry, Faculty of Science, Karaj Branch, Islamic Azad University, Karaj, Iran
5 - Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
تاریخ دریافت : 1402/09/22
تاریخ پذیرش : 1402/09/22
تاریخ انتشار : 1402/07/09
کلید واژه:
چکیده مقاله :
Nanocomposites of hard-soft ferrites (SrFe12O19) (1-x)/(Ni0.4Mn0.2Zn0.4Fe2O4) x with x = 0.2, 0.4, 0.6,and 0.8 are synthesized by the auto-combustion sol-gel method. In-situ polymerization is used to create polyaniline and hard-soft ferrite nanocomposites. X-ray powder diffractometers (XRD), field emission scanning electron microscopes (FESEM), Fourier transform infrared spectra (FTIR),vibrating sample magnetometers (VSM), and vector network analyzers (VNA) have all been used to evaluate the structure, morphology, magnetic properties, and microwave absorption ofnanocomposites. FT-IR spectra are used to confirm and validate the existence of both tetrahedral and octahedral complexes, as well as the interactions between polymer chains and hard and soft nanoparticles, which show that ferrite nanocomposites are coated with polymers. In hard-soft and polymeric nanocomposites, XRD analysis reveals the presence of pure hard and soft phase characteristics as well as PANI characteristics. SEM images show that the particles agglomerate in hard-soft composites as the soft phase rises as a result of being magnetic, and images for polymericcomposites show cohesive PANI particles that surround the hard-soft ferrite particle's surface.These findings demonstrate that PANI and hard-soft ferrites can be properly connected. VSM analysis revealed that by adding polymers, the magnetic properties of hard-soft composites dropped significantly due to the nonmagnetic effects of PANI. The VNA test shows that PANI/(SrFe12O19)0.4/(Ni0.4Mn0.2Zn0.4Fe2O4)0.6 exhibits optimized reflection loss from -1.84 to -16.53 in the X-Band (8-12.5 GHz frequency range) when compared to (SrFe12O19)0.4/ (Ni0.4Mn0.2Zn0.4Fe2O4) 0.6 with a matching thickness of 3 mm.
منابع و مأخذ:
Mathews SA, Babu DR, Saravanan P, Hayakawa Y. Microwave absorption studies of (Ba0. 5Sr0. 5Fe12O19) 1-x/(NiFe2O4) x hard/soft ferrite nanocomposites. Materials Chemistry and Physics. 2020;252:123063.
Sudhakaran A, Sudhakaran A, Sivasenthil E. Investigating structure, elasticity, morphology, composition, and optical behavior of Al-doped BaFe12O19/CoZnFe2O4 hybrid composite. Journal of Materials Research. 2023;38(5):1239-53.
Qie Y, Liu Y, Kong F, Yang Z, Yang H. Exchange-Coupling of Hard/Soft Magnetic Phases of Co/FeCo Nanocomposites. The Journal of Physical Chemistry C. 2022;126(20):8826-31.
Yousefi M, Afghahi S, Amini M, Torbati MB. An investigation of structural and magnetic properties of Ce–Nd doped strontium hexaferrite nanoparticles as a microwave absorbent. Materials Chemistry and Physics. 2019;235:121722.
Sudhakaran A, Sudhakaran A, Sivasenthil E. Multifunctionality of AlBaFe12O19/CoZnFe2O4 hybrid nanocomposite: Promising structural, elastic, morphological, compositional, optical, and magnetic properties. Journal of Physics and Chemistry of Solids. 2023;174:111134.
Mortazavinik S, Yousefi M. Preparation, magnetic properties and microwave absorption of Zr–Zn–Co substituted strontium hexaferrite and its nanocomposite with polyaniline. Russian Journal of Applied Chemistry. 2017;90:298-303.
Mesdaghi S, Yousefi M, Mahdavian A. The effect of PANI and MWCNT on magnetic and photocatalytic properties of substituted barium hexaferrite nanocomposites. Materials Chemistry and Physics. 2019;236:121786.
Beheshti KA, Yousefi M. Magnetic and microwave absorption of BaMgxZrxFe12-2xO19 polyaniline nanocomposites. Journal of Alloys and Compounds. 2021;859:157861.
Xia J, Ning Y, Luo Y, Chen W, Wu X, Wu W, et al. Structural and magnetic properties of soft/hard NiFe 2 O 4@ SrCo 0.2 Fe 11.8 O 19 core/shell composite prepared by the ball-milling-assisted ceramic process. Journal of Materials Science: Materials in Electronics. 2018;29:13903-13.
Harikrishnan V, Vizhi RE. A study on the extent of exchange coupling between (Ba0. 5Sr0. 5Fe12O19) 1− x (CoFe2O4) x magnetic nanocomposites synthesized by solgel combustion method. Journal of Magnetism and Magnetic Materials. 2016;418:217-23.
Xia J, Shen Y, Xiao C, Chen W, Wu X, Wu W, et al. Structural and Magnetic Properties of Soft/Hard Mn 0.6 Zn 0.4 Fe 2 O 4@ Sr 0.85 Ba 0.15 Fe 12 O 19 Core/Shell Composite Synthesized by the Ball-Milling-Assisted Ceramic Process. Journal of Electronic Materials. 2018;47:6811-20.
Han Q, Meng X, Lu C. Exchange-coupled Ni0. 5Zn0. 5Fe2O4/SrFe12O19 composites with enhanced microwave absorption performance. Journal of Alloys and Compounds. 2018;768:742-9.
Song F, Shen X, Liu M, Xiang J. Magnetic hard/soft nanocomposite ferrite aligned hollow microfibers and remanence enhancement. Journal of colloid and interface science. 2011;354(1):413-6.
Radmanesh M, Ebrahimi SS. Synthesis and magnetic properties of hard/soft SrFe12O19/Ni0. 7Zn0. 3Fe2O4 nanocomposite magnets. Journal of magnetism and magnetic materials. 2012;324(19):3094-8.
Roy D, Shivakumara C, Kumar PA. Observation of the exchange spring behavior in hard–soft-ferrite nanocomposite. Journal of magnetism and magnetic materials. 2009;321(5):L11-L4.
López-Ortega A, Estrader M, Salazar-Alvarez G, Roca AG, Nogués J. Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Physics Reports. 2015;553:1-32.
Tyagi S, Baskey HB, Agarwala RC, Agarwala V, Shami TC. Development of hard/soft ferrite nanocomposite for enhanced microwave absorption. Ceramics International. 2011;37(7):2631-41.
Torkian S, Ghasemi A, Razavi RS. Magnetic properties of hard-soft SrFe10Al2O19/Co0. 8Ni0. 2Fe2O4 ferrite synthesized by one-pot sol–gel auto-combustion. Journal of Magnetism and Magnetic Materials. 2016;416:408-16.
Almessiere MA, Slimani Y, Baykal A. Structural, morphological and magnetic properties of hard/soft SrFe12-xVxO19/(Ni0. 5Mn0. 5Fe2O4) y nanocomposites: effect of vanadium substitution. Journal of Alloys and Compounds. 2018;767:966-75.
Pahwa C, Mahadevan S, Narang SB, Sharma P. Structural, magnetic and microwave properties of exchange coupled and non-exchange coupled BaFe12O19/NiFe2O4 nanocomposites. Journal of Alloys and Compounds. 2017;725:1175-81.
Jiang C, Liu R, Shen X, Zhu L, Song F. Ni0. 5Zn0. 5Fe2O4 nanoparticles and their magnetic properties and adsorption of bovine serum albumin. Powder technology. 2011;211(1):90-4.
Fang G, Liu C, Yang Y, Peng K, Cao Y, Xu G, Zhang Y. High-efficiency microwave absorbing performance originating from sufficient magnetic exchange coupling interaction and impressive dielectric loss. Journal of Materials Chemistry C. 2021;9(6):1936-44.
Algarou NA, Slimani Y, Almessiere MA, Alahmari F, Vakhitov M, Klygach D, et al. Magnetic and microwave properties of SrFe12O19/MCe0. 04Fe1. 96O4 (M= Cu, Ni, Mn, Co and Zn) hard/soft nanocomposites. Journal of Materials Research and Technology. 2020;9(3):5858-70.
Hernando A, González J. Soft and hard nanostructured magnetic materials. Hyperfine Interactions. 2000;130(1-4):221-40.
Arcas J, Hernando A, Barandiarán J, Prados C, Vázquez M, Marín P, Neuweiler A. Soft to hard magnetic anisotropy in nanostructured magnets. Physical Review B. 1998;58(9):5193.
Almessiere MA, Slimani Y, Trukhanov A, Sadaqat A, Korkmaz AD, Algarou NA, et al. Review on functional bi-component nanocomposites based on hard/soft ferrites: structural, magnetic, electrical and microwave absorption properties. Nano-Structures & Nano-Objects. 2021;26:100728.
Hazra S, Ghosh BK, Patra MK, Jani RK, Vadera SR, Ghosh NN. A novel ‘one-pot’synthetic method for preparation of (Ni0. 65Zn0. 35Fe2O4) x–(BaFe12O19) 1− x nanocomposites and study of their microwave absorption and magnetic properties. Powder technology. 2015;279:10-7.
Feng H, Bai D, Tan L, Chen N, Wang Y. Preparation and microwave-absorbing property of EP/BaFe12O19/PANI composites. Journal of Magnetism and Magnetic Materials. 2017;433:1-7.
Jiang J, Ai L, Li L. Synthesis and characterization of polyaniline-based nanocomposites containing magnetic Li–Ni–La ferrite. Journal of non-crystalline solids. 2009;355(34-36):1733-6.
Tavakolinia F, Yousefi M, Afghahi SSS, Baghshahi S, Samadi S. Synthesis of novel hard/soft ferrite composites particles with improved magnetic properties and exchange coupling. Processing and Application of Ceramics. 2018;12(3):248-56.
Li Z-F, Zhang H, Liu Q, Liu Y, Stanciu L, Xie J. Covalently-grafted polyaniline on graphene oxide sheets for high performance electrochemical supercapacitors. Carbon. 2014;71:257-67.
Hosseini SH, Mohseni S, Asadnia A, Kerdari H. Synthesis and microwave absorbing properties of polyaniline/MnFe2O4 nanocomposite. Journal of Alloys and Compounds. 2011;509(14):4682-7.
Tavakolinia F, Yousefi M, Afghahi SSS, Baghshahi S, Samadi S. Effect of Polyaniline on Magnetic and Microwave Absorption Properties in SrFe 12 O 19/Zn 0.4 Co 0.2 Ni 0.4 Fe 2 O 4 Ferrite Nanocomposites. Journal of Inorganic and Organometallic Polymers and Materials. 2020;30:4014-26.
Almessiere M, Slimani Y, Attia H, Sheikh S, Sadaqat A, Vakhitov M, et al. Alterations in the magnetic and electrodynamic properties of hard-soft Sr0. 5Ba0. 5Eu0. 01Fe12O19/NixCuyZnwFe2O4 nanocomposites. journal of materials research and technology. 2021;15:1416-29.
Sozeri H, Kurtan U, Topkaya R, Baykal A, Toprak MS. Polyaniline (PANI)–Co0. 5Mn0. 5Fe2O4 nanocomposite: Synthesis, characterization and magnetic properties evaluation. Ceramics International. 2013;39(5):5137-43.
Liangchao L, Haizhen Q, Yuping W, JIANG J, Feng X. Preparation and magnetic properties of Cu0. 4Zn0. 6Cr0. 5Sm0. 06Fe1. 44O4/polyaniline nanocomposites. Journal of Rare Earths. 2008;26(4):558-62.
Dahal JN, Neupane D, Poudel T. Synthesis and magnetic properties of 4: 1 hard-soft SrFe12O19-La1-xSrxMnO3 nanocomposite prepared by auto-combustion method. AIP Advances. 2019;9(7):075308.
Chen K, Xiang C, Li L, Qian H, Xiao Q, Xu F. A novel ternary composite: fabrication, performance and application of expanded graphite/polyaniline/CoFe 2 O 4 ferrite. Journal of Materials Chemistry. 2012;22(13):6449-55.
Jiang J, Li L, Xu F. Polyaniline–LiNi ferrite core–shell composite: Preparation, characterization and properties. Materials Science and Engineering: A. 2007;456(1-2):300-4.
Zhu H, Lin H, Guo H, Yu L. Microwave absorbing property of Fe-filled carbon nanotubes synthesized by a practical route. Materials Science and Engineering: B. 2007;138(1):101-4.
Singh P, Babbar V, Razdan A, Puri R, Goel T. Complex permittivity, permeability, and X-band microwave absorption of CaCoTi ferrite composites. Journal of applied physics. 2000;87(9):4362-6.
Xu P, Han X, Jiang J, Wang X, Li X, Wen A. Synthesis and characterization of novel coralloid polyaniline/BaFe12O19 nanocomposites. The Journal of Physical Chemistry C. 2007;111(34):12603-8.
Kessler Z. Electrical Conductivily in Heterogeneous Polymer. Polymer.12(14):16.
Kim S, Jo S, Gueon K, Choi K, Kim J, Churn K. Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies. IEEE Transactions on Magnetics. 1991;27(6):5462-4.
Naito Y, Suetake K. Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Transactions on Microwave Theory and Techniques. 1971;19(1):65-72.