حسگری همکارانه طیف مبتنی بر آشکارسازی دو آستانهای با قابلیت بهبود همزمان گذردهی و کاهش انرژی مصرفی در شبکه رادیو شناختگر
محورهای موضوعی : ارتباطات بی سیممسعود مرادخانی 1 , فرزاد سلطانیان 2
1 - گروه برق، دانشکده فنی مهندسی، واحد ایلام، دانشگاه آزاد اسلامی، ایلام، ایران
2 - گروه برق، دانشکد فنی مهندسی، واحد ایلام، دانشگاه آزاد اسلامی، ایلام، ایران
کلید واژه: حسگری طیف همکارانه, گذردهی, آشکارسازی انرژی, رادیو شناختگر, انرژی مصرفی,
چکیده مقاله :
با انجام حسگری طیف همکارانه در یک شبکه رادیو شناختگر اگر چه با افزایش تعداد کاربران ثانویه گذردهی شبکه افزایش مییابد، اما در عین حال باعث افزایش مصرف انرژی نیز میگردد. این موضوع لزوم ارائه سیستمی که قادر به ایجاد موازنه بین گذردهی و انرژی مصرفی باشد را ضروری میسازد. برخلاف روش متعارف حسگری طیف مبتنی بر یک مقدار آستانه آشکارسازی، حسگری طیف با دو مقدار آستانه از گزارش دادههای غیرقابل اعتماد به مرکز همجوشی جلوگیری میکند، بنابراین میتواند به طور بالقوه منجر به صرفهجویی بیشتر در انرژی مصرفی شود. در این مقاله یک شبکه رادیو شناختگر با حسگری طیف دو آستانه ای و با فرض کانال گزارش غیرایده ال بهینه سازی میگردد. مقادیر بهینه آستانه و زمان حسگری به صورت توام محاسبه میگردند تا گذردهی شبکه را حداکثر کرده مشروط بر اینکه انرژی مصرفی و میزان تداخل با کاربران اولیه محدود گردد. مساله بهینه سازی فرمول بندی شده و روشی عددی برای حل آن ارائه میگردد. نتایج شبیهسازی نشاندهنده یک سیستم انعطاف پذیر است که میتواند همزمان گذردهی بالاتر و انرژی مصرفی کمتری را نسبت به روش متعارف حسگری فراهم کند. این نتایج ضمن تایید تاب آوری بالاتر در برابر خطای کانال گزارش، صرفه جویی انرژی قابل توجهی تا سقف 70% را با تضمین کارایی گذردهی بیشتر از 1 نشان می دهد.
By performing cooperative spectrum sensing in a cognitive radio network, although the network throughput increases with the increase in the number of secondary users, but at the same time, it also causes an increase in energy consumption. This makes it necessary to provide a system that is able to create a tradeoff between throughput and energy consumption. In contrast to the conventional method of spectrum sensing based on one detection threshold, spectrum sensing with double thresholds avoids reporting unreliable data to the fusion center, thus potentially leading to greater energy saving. In this paper, a double threshold spectrum sensing cognitive radio network with a non-ideal reporting channel is optimized. The values of the threshold and the sensing time are jointly optimized to maximize the throughput of the network, provided that the network energy consumption and the amount of interference with the primary users are limited. The optimization problem is formulated and a numerical method is presented to solve it. The simulation results show a flexible system that can simultaneously provide higher throughput and lower energy consumption than the conventional sensing method. These results, while confirming the higher tolerance against the error of the reporting channel, show a significant energy saving of up to 70% by guaranteeing the throughput efficiency greater than 1.
[1] S. Haykin and P. Setoodeh, "Cognitive Radio Networks: The Spectrum Supply Chain Paradigm," in IEEE Transactions on Cognitive Communications and Networking, vol. 1, no. 1, pp. 3-28, March 2015, doi: 10.1109/TCCN.2015.2488627.
[2] Y. -C. Liang, Y. Zeng, E. C. Y. Peh and A. T. Hoang, "Sensing-Throughput Tradeoff for Cognitive Radio Networks," in IEEE Transactions on Wireless Communications, vol. 7, no. 4, pp. 1326-1337, April 2008, doi: 10.1109/TWC.2008.060869.
[3] G. M. Salama and S. A. Taha, "Cooperative Spectrum Sensing and Hard Decision Rules for Cognitive Radio Network," 2020 3rd International Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 2020, pp. 1-6, doi: 10.1109/ICCAIS48893.2020.9096740.
[4] J. Tong, M. Jin, Q. Guo and Y. Li, “Cooperative spectrum sensing: a blind and soft fusion detector,”IEEE Transactions on Wireless Communications, vol. 17, no. 4, pp. 2726-2737, April 2018, doi: 10.1109/TWC.2018.2801833.
[5] K. R. Rao et al., "Genetic Algorithm for Cross-Layer-Based Energy Hole Minimization in Wireless Sensor Networks," in IEEE Sensors Letters, vol. 6, no. 12, pp. 1-4, Dec. 2022, Art no. 7005104, doi: 10.1109/LSENS.2022.3219857.
[6] R. Wan et al, "Dynamic dual threshold cooperative spectrum sensing for cognitive radio under noise power uncertainty,” Human-centric Computing and Information Sciences, vol. 9, no. 22, pp. 1-21, 2019, doi: 10.1186/s13673-019-0181-x.
[7] S. Chaudhari et al., " BEP walls for cooperative sensing in cognitive radios using K-out-of-N fusion rules," Signal Processing, vol. 93, no. 7, pp. 1900-1908, 2013, doi: 10.1016/j.sigpro.2013.01.016.
[8] N. Saeed and H. Nam, "Energy Efficient Localization Algorithm With Improved Accuracy in Cognitive Radio Networks," in IEEE Communications Letters, vol. 21, no. 9, pp. 2017-2020, Sept. 2017, doi: 10.1109/LCOMM.2017.2712802.
[9] A. Bayat and S. Aïssa, "Full-duplex cognitive radio with asynchronous energy-efficient sensing," in IEEE Transactions on Wireless Communications, vol. 17, no. 2, pp. 1066-1080, Feb. 2018, doi: 10.1109/TWC.2017.2774268.
[10] K. Illanko et al., "Energy-Efficient Frequency and Power Allocation for Cognitive Radios in Television Systems," in IEEE Systems Journal, vol. 10, no. 1, pp. 313-324, March 2016, doi: 10.1109/JSYST.2015.2393834.
[11] M. Cui et al., "Energy-Efficient Power Control Algorithms in Massive MIMO Cognitive Radio Networks," in IEEE Access, vol. 5, pp. 1164-1177, 2017, doi: 10.1109/ACCESS.2017.2652441.
[12] H. Xiao et al., "Energy-Efficient Resource Allocation in Multiple UAVs-Assisted Energy Harvesting-Powered Two-Hop Cognitive Radio Network," in IEEE Sensors Journal, vol. 23, no. 7, pp. 7644-7655, 1 April, 2023, doi: 10.1109/JSEN.2023.3247436.
[13] H. Pradhan, S. S. Kalamkar and A. Banerjee, "Sensing-Throughput Tradeoff in Cognitive Radio With Random Arrivals and Departures of Multiple Primary Users," in IEEE Communications Letters, vol. 19, no. 3, pp. 415-418, March 2015, doi: 10.1109/LCOMM.2015.2393305.
[14] A. Ahmed et al., "Cognitive Radio Timing Protocol for Interference-Constrained Throughput Maximization," in IEEE Transactions on Cognitive Communications and Networking, vol. 8, no. 2, pp. 989-1004, June 2022, doi: 10.1109/TCCN.2021.3137487
[15] G. C. Das et al., "Throughput Analysis of a Energy Harvesting Cooperative Cognitive Radio Network," General Assembly and Scientific Symposium of the International Union of Radio Science, Rome, Italy, 2020, pp. 1-4, doi: 10.23919/URSIGASS49373.2020.9232411.
[16] M. Zheng, W. Liang and H. Yu, "Harvesting-Throughput Tradeoff for CDMA-Based Underlay Cognitive Radio Networks With Wireless Energy Harvesting," in IEEE Systems Journal, vol. 12, no. 3, pp. 2395-2398, Sept. 2018 , doi: 10.1109/JSYST.2016.2636278.
[17] Y. Long et al., "Throughput Optimization in Energy Harvesting based Cognitive IoT with Cooperative Sensing," IEEE Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 2021, pp. 1-5, doi: 10.1109/VTC2021-Spring51267.2021.9448917.
[18] E. Hill and H. Sun, "Double Threshold Spectrum Sensing Methods in Spectrum-Scarce Vehicular Communications," in IEEE Transactions on Industrial Informatics, vol. 14, no. 9, pp. 4072-4080, Sept. 2018, doi: 10.1109/TII.2018.2816580.
[19] Smriti and C. Chhagan, "Double Threshold-Based Energy Detection Spectrum Sensing Scheme by Considering the Sensing History in Confusion Region," 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 2018, pp. 518-521, doi: 10.1109/SPIN.2018.8474248.
[20] P. Maity and S. Deshmukh, "Optimization of Majority Rule Threshold in Double Threshold Based Cooperative Cognitive Radio Network," Twenty Fourth National Conference on Communications (NCC), Hyderabad, India, 2018, pp. 1-6, doi: 10.1109/NCC.2018.8599992.
[21] S. Ghosh et al, "Performance of weighted fusion based spectrum sensing under double threshold in cognitive radio network," International Conference on Microelectronics, Computing and Communications (MicroCom), Durgapur, India, 2016, pp. 1-4, doi: 10.1109/MicroCom.2016.7522442.
[22] H. N. Abdullah, N. Sh. Bakr and A. A. Valenzuela, "Double Threshold Soft Decision Rule for Improving Performance of Cognitive Radio Networks," IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin), Berlin, Germany, 2019, pp. 158-161, doi: 10.1109/ICCE-Berlin47944.2019.8966232.
[23] P. Verma and B. Singh, "Simulation study of double threshold energy detection method for cognitive radios," 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 2015, pp. 232-236, doi: 10.1109/SPIN.2015.7095276.
[24] A. Kumar, S. Saha and K. Tiwari, "A Double Threshold-Based Cooperative Spectrum Sensing With Novel Hard-Soft Combining Over Fading Channels," in IEEE Wireless Communications Letters, vol. 8, no. 4, pp. 1154-1158, Aug. 2019, doi: 10.1109/LWC.2019.2909879.
[25] Y. Liu, C. Zhu and P. Yan, "An energy-saving spectrum sensing scheme with combined clustering and censoring in cognitive wireless sensor networks," International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 2017, pp. 1-6, doi: 10.1109/WCSP.2017.8170892.
[26] M. Moradkhani, P. Azmi and M. A. Pourmina, "Optimized energy limited cooperative spectrum sensing in cognitive radio network," Computers & Electrical Engineering, vol. 42, pp. 221-231, 2015, doi: 10.1016/j.compeleceng.2014.02.005.
[27] M. Moradkhani, P. Azmi and M. A. Pourmina, "Optimized Reliable Data Combining Cooperative Spectrum Sensing Method in Cognitive Radio Networks," Wireless Personal Communications, vol. 74, pp. 569-583, 2014, doi: 10.1007/s11277-013-1307-5.
[28] T. C. Thanuja, K. A. Daman and A. S. Patil, "Optimized Spectrum sensing Techniques for Enhanced Throughput in Cognitive Radio Network," International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 2020, pp. 137-141, doi: 10.1109/ESCI48226.2020.9167576.