The Inverse Method of Damage Detection using Swarm Life Cycle Algorithm (SLCA) via Modal Parameters in Beam Like Structures
محورهای موضوعی : Mechanical EngineeringAlireza Arghavan 1 , Ali Ghoddosian 2 , Ehsan Jamshidi 3
1 - Department of Mechanical Engineering, Semnan University, Semnan, Iran.
2 - Department of Mechanical Engineering,
Semnan University, Semnan, Iran
3 - Energy and Sustainable Development Research Center,
Semnan Branch, Islamic Azad University, Semnan, Iran.
کلید واژه: particle swarm optimization, Genetic Algorithm, Hybrid algorithm, Modal Properties, Damage Detection,
چکیده مقاله :
The Non-destructive vibration based structural damage detection techniques have been developed in the recent decades. They are usually converted into a mathematical optimization problem that should be solved using optimization algorithms. In this paper, a new hybrid algorithm, using a particle swarm - genetic optimization, is proposed that is called Swarm Life Cycle Algorithm (SLCA). Additionally, Modified Total Modal Assurance Criterion (MTMAC) that is modal based and involved natural frequencies and mode shapes, is used as an objective function. A cantilever beam is modelled and simulated using finite element method as a numerical case study with several different damage scenarios. To compare the effectiveness of the proposed algorithm with GA and PSO, they are applied to detect the locations and severities of damages of numerical cases separately. To assess the robustness of them, the effects of environmental noise, coordinate and mode incompleteness on the accuracy of damage detection have investigated. For experimental validation of the proposed method, empirical studies of single and double crack aluminium cantilever beams were conducted. The numerical and experimental results show that the proposed algorithm has great potential in crack identification. It is observed that SLCA is able to detect the location and extent of damage irrespective of the noise level and perform well in the presence of mode and coordinate incompleteness.
[1] Doebling, S. W., Farrar, C. R., Prime, M. B., and Shevitz, D. W., Daemage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review, 1996.
[2] Fan, W., Qiao, P., Vibration-Based Damage Identification Methods: A Review and Comparative Study, Struct. Heal. Monit., Vol. 10, No. 1, 2011, pp. 83–111. doi: 10.1177/1475921710365419.
[3] Dimarogonas, A. D., Vibration of Cracked Structures: A State of the Art Review, Eng. Fract. Mech., Vol. 55, No. 5, 1996, pp. 831–857. doi: 10.1016/0013-7944(94)00175-8.
[4] Salawu, O. S., Detection of Structural Damage Through Changes in Frequency: A Review, Eng. Struct., Vol. 19, No. 9, 1997, pp. 718–723. doi: 10.1016/S0141-0296(96)00149-6.
[5] Doebling, S. W., Farrar, C. R., and Prime, M. B., A Summary Review of Vibration-Based Damage Identification Methods, J. Appl. Mech., Vol. 111, No. 2, 1998, pp. 270–78. doi: 10.1177/058310249803000201.
[6] Sohn, H., Farrar, C. R., Hemez, F., and Czarnecki, J., A Review of Structural Health Monitoring Literature 1996 – 2001, Third World Conf. Struct. Control, No. DECEMBER, 2002, pp. 1–7. doi: LA-13976-MS.
[7] Carden, E. P., Fanning, P., Vibration Based Condition Monitoring: A Review, Struct. Heal. Monit., Vol. 3, No. 4, 2004, pp. 355–377. doi: 10.1177/1475921704047500.
[8] Jassim, Z. A., Ali, N. N., Mustapha, F., and Abdul Jalil, N. A., A Review On the Vibration Analysis for A Damage Occurrence of a Cantilever Beam, Eng. Fail. Anal., Vol. 31, 2013, pp. 442–461. doi: 10.1016/j.engfailanal.2013.02.016.
[9] Dessi, D., Camerlengo, G., Damage Identification Techniques Via Modal Curvature Analysis: Overview and Comparison, Mech. Syst. Signal Process., Vol. 52–53, Vo. 1, 2015, pp. 181–205. doi: 10.1016/j.ymssp.2014.05.031.
[10] Das S., Saha, P., and Patro, S. K., Vibration-Based Damage Detection Techniques Used for Health Monitoring of Structures: A Review, J. Civ. Struct. Heal. Monit., Vol. 6, No. 3, 2016, pp. 477–507. doi: 10.1007/s13349-016-0168-5.
[11] Wang, S., Xu, M., Modal Strain Energy-based Structural Damage Identification: A Review and Comparative Study, Struct. Eng. Int., Vol. 29, No. 2, 2019, pp. 234–248. doi: 10.1080/10168664.2018.1507607.
[12] Mares, C., Surace, C., An Application of Genetic Algorithms to Identify Damage in Elastic Structures, J. Sound Vib., Vol. 195, No. 2, 1996, pp. 195–215. doi: 10.1006/jsvi.1996.0416.
[13] Chou, J. H., Ghaboussi, J., Genetic Algorithm in Structural Damage Detection, Comput. Struct., Vol. 79, No. 14, 2001, pp. 1335–1353. doi: 10.1016/S0045-7949(01)00027-X.
[14] Hao, H., Xia, Y., Vibration-Based Damage Detection of Structures by Genetic Algorithm, J. Comput. Civ. Eng., Vol. 16, No. 3, 2002, pp. 222–229. doi: 10.1061/(ASCE)0887-3801(2002)16:3(222).
[15] Au, F. T. K., Cheng, Y. S., Tham, L. G., and Bai, Z. Z., Structural Damage Detection Based On a Micro-Genetic Algorithm Using Incomplete and Noisy Modal Test Data, J. Sound Vib., Vol. 259, No. 5, 2003, pp. 1081–1094. doi: 10.1006/jsvi.2002.5116.
[16] Rao, M. A., Srinivas, J., and Murthy, B. S. N., Damage Detection in Vibrating Bodies Using Genetic Algorithms, Comput. Struct., Vol. 82, No. 11–12, 2004, pp. 963–968. doi: 10.1016/j.compstruc.2004.01.005.
[17] Perera, R., Torres, R., Structural Damage Detection via Modal Data with Genetic Algorithms, J. Struct. Eng., Vol. 132, No. 9, 2006, pp. 1491–1501. doi: 10.1061/(ASCE)0733-9445(2006)132:9(1491).
[18] Wang, L. Y., Zhang, J., and Li, H., An Improved Genetic Algorithm for Structural Damage Detection, in 2007 International Conference on Machine Learning and Cybernetics, 2007, pp. 925–928. doi: 10.1109/ICMLC.2007.4370274.
[19] Gomes, H. M., Silva, N. R. S., Some Comparisons for Damage Detection On Structures Using Genetic Algorithms and Modal Sensitivity Method, Appl. Math. Model., Vol. 32, No. 11, 2008, pp. 2216–2232. doi: 10.1016/j.apm.2007.07.002.
[20] Laier, J. E., Morales, J. D. V., Improved Genetic Algorithm for Structural Damage Detection, Comput. Struct. Eng., 2009, pp. 833–839.
[21] Perera, R., Ruiz, A., and Manzano, C., Performance Assessment of Multicriteria Damage Identification Genetic Algorithms, Comput. Struct., Vol. 87, No. 1–2, 2009, pp. 120–127. doi: 10.1016/j.compstruc.2008.07.003.
[22] Meruane, V., Heylen, W., Damage Detection with Parallel Genetic Algorithms and Operational Modes, Struct. Heal. Monit., Vol. 9, No. 6, 2010, pp. 481–496. doi: 10.1177/1475921710365400.
[23] Buezas, F. S., Rosales, M. B., and Filipich, C. P., Damage Detection with Genetic Algorithms Taking into Account a Crack Contact Model, Eng. Fract. Mech., Vol. 78, No. 4, 2010, pp. 695–712. doi: 10.1016/j.engfracmech.2010.11.008.
[24] Nobahari, M., Seyedpoor, S.M., Structural Damage Detection Using an Efficient Correlation-Based Index and A Modified Genetic Algorithm, Math. Comput. Model., Vol. 53, No. 9–10, 2011, pp. 1798–1809 doi: 10.1016/j.mcm.2010.12.058.
[25] Liu, H., Xin, K., and Qi, Q., Study of Structural Damage Detection with Multi-Objective Function Genetic Algorithms, Procedia Eng., Vol. 12, 2011, pp. 80–86. doi: 10.1016/j.proeng.2011.05.014.
[26] Guo, H. Y., Li, Z. L., Structural Damage Identification Based On Bayesian Theory and Improved Immune Genetic Algorithm, Expert Syst. Appl., Vol. 39, No. 7, 2012, pp. 6426–6434. doi: 10.1016/j.eswa.2011.12.023.
[27] Malekzehtab, H., Golafshani, A. A., Damage Detection in an Offshore Jacket Platform Using Genetic Algorithm Based Finite Element Model Updating with Noisy Modal Data, Procedia Eng., Vol. 54, 2013, pp. 480–490.
[28] S. Beygzydeh, E. Salajegheh, P. Torkzadeh, J. Salajedheh, and S. S. Naseralavi, An Improved Genetic Algorithm for Optimal Sensor Placement in Space Structures Damage Detection.pdf, Int. J. Sp. Struct., Vol. 29, No. 3, pp. 121–136, 2014.
[29] M. J. Mungla, D. S. Sharma, and R. R. Trivedi, Identification of a Crack in Clamped-Clamped Beam using Frequency-based Method and Genetic Algorithm, Procedia Eng., Vol. 144, pp. 1426–1434, 2016, doi: 10.1016/j.proeng.2016.05.174.
[30] S. M. Seyedpoor, Structural Damage Detection Using a Multi-Stage Particle Swarm Optimization, Adv. Struct. Eng., Vol. 14, No. 3, pp. 533–549, 2011, doi: 10.1260/1369-4332.14.3.533.
[31] S. M. Seyedpoor, A Two Stage Method for Structural Damage Detection Using a Modal Strain Energy Based Index and Particle Swarm Optimization,” Int. J. Non. Linear. Mech., Vol. 47, No. 1, pp. 1–8, 2012, doi: 10.1016/j.ijnonlinmec.2011.07.011.
[32] B. Nanda, D. Maity, and D. K. Maiti, Vibration Based Structural Damage Detection Technique using Particle Swarm Optimization with Incremental Swarm Size, Int. J. Aeronaut. Sp. Sci., Vol. 13, No. 3, pp. 323–331, 2012, doi: 10.5139/IJASS.2012.13.3.323.
[33] H. Gökdağ, A. R. Yildiz, Structural Damage Detection Using Modal Parameters and Particle Swarm Optimization, Mater. Test., Vol. 54, pp. 416–420, 2012, doi: 10.3139/120.110346.
[34] F. Kang, J. J. Li, and Q. Xu, Damage Detection Based On Improved Particle Swarm Optimization Using Vibration Data, Appl. Soft Comput. J., Vol. 12, No. 8, pp. 2329–2335, 2012, doi: 10.1016/j.asoc.2012.03.050.
[35] S. C. Mohan, D. K. Maiti, and D. Maity, Structural Damage Assessment Using FRF Employing Particle Swarm Optimization, Appl. Math. Comput., vol. 219, No. 20, pp. 10387–10400, 2013, doi: 10.1016/j.amc.2013.04.016.
[36] B. Nanda, D. Maity, and D. K. Maiti, Modal Parameter Based Inverse Approach for Structural Joint Damage Assessment Using Unified Particle Swarm Optimization, Appl. Math. Comput., Vol. 242, pp. 407–422, 2014, doi: 10.1016/j.amc.2014.05.115.
[37] B. Nanda, D. Maity, and D. K. Maiti, Crack Assessment in Frame Structures Using Modal Data and Unified Particle Swarm Optimization Technique, Adv. Struct. Eng., Vol. 17, No. 5, pp. 747–766, 2014, doi: 10.1260/1369-4332.17.5.747.
[38] A. Rasouli, G. Ghodrati Amiri, A. Kheyroddin, M. Ghafory-Ashtiany, and S. S. Kourehli, A New Method for Damage Prognosis Based On Incomplete Modal Data Via an Evolutionary Algorithm, Eur. J. Environ. Civ. Eng., Vol. 18, No. 3, pp. 253–270, 2014, doi: 10.1080/19648189.2014.881758.
[39] S. Jiang, S. Wu, and L. Dong, A Time-Domain Structural Damage Detection Method Based on Improved Multiparticle Swarm Coevolution Optimization Algorithm, Math. Probl. Eng., Vol. 2014, pp. 1–11, 2014.
[40] Nanda, B., Maity, D., and Maiti, D. K., Damage Assessment from Curvature Mode Shape Using Unified Particle Swarm Optimization, Struct. Eng. Mech., Vol. 52, No. 2, pp. 307–322, 2014, doi: 10.12989/sem.2014.52.2.307.
[41] Xiang, J. W., et al., Crack Detection in Simply Supported Beams Using Stationary Wavelet Transform of Modal Data Shuncong, J. Sound Vib., Vol. 17, No. 3, pp. 1–6, 2014, doi: 10.1260/1369-4332.14.3.533.
[42] J. E. Laier, J. E., Villalba, J. D., Ensuring Reliable Damage Detection Based On the Computation of the Optimal Quantity of Required Modal Data, Comput. Struct., Vol. 147, pp. 117–125, 2015.
[43] Kaveh, A., Maniat, M., Damage Detection Based On Mcss and PSO Using Modal Data, Smart Struct. Syst., Vol. 15, No. 5, pp. 1253–1270, 2015, doi: 10.12989/sss.2015.15.5.1253.
[44] Wei, Z., Liu, J., and Lu, Z., Structural Damage Detection Using Improved Particle Swarm Optimization, Inverse Probl. Sci. Eng., Vol. 5977, No. July, pp. 1–19, 2017, doi: 10.1080/17415977.2017.1347168.
[45] Khatir, S., Dekemele, K., Loccufier, M., Khatir, T., and Abdel Wahab, M., Crack Identification Method in Beam-Like Structures Using Changes in Experimentally Measured Frequencies and Particle Swarm Optimization, Comptes Rendus - Mec., Vol. 346, No. 2, pp. 110–120, 2018, doi: 10.1016/j.crme.2017.11.008.
[46] Nadjafi, S., Amiri, G. G., Hosseinzadeh, A. Z., and Seyed, S. A., An Effective Approach for Damage Identification in Beam - Like Structures Based on Modal Flexibility Curvature and Particle Swarm Optimization, J. Rehabil. Civ. Eng., Vol. 1, No. 8, pp. 109–120, 2020, doi: 10.22075/JRCE.2019.553.1081.
[47] Shi, X. H., Liang, Y. C, Lee, H. P., Lu, C., and Wang, L. M., An Improved GA and A Novel PSO-GA-Based Hybrid Algorithm, Inf. Process. Lett., Vol. 93, No. 5, pp. 255–261, 2005.
[48] Kao, Y. T., Zahara, E., A Hybrid Genetic Algorithm and Particle Swarm Optimization for Multimodal Functions, Appl. Soft Comput. J., Vol. 8, No. 2, pp. 849–857, 2008, doi: 10.1016/j.asoc.2007.07.002.
[49] Begambre, O., Laier, J. E., A Hybrid Particle Swarm Optimization - Simplex Algorithm (PSOS) for Structural Damage Identification, Adv. Eng. Softw., vol. 40, no. 9, pp. 883–891, 2009, doi: 10.1016/j.advengsoft.2009.01.004.
[50] Premalatha, K., Natarajan, A. M., Hybrid PSO and GA for Global Maximization, Int. J. Open Probl. Compt. Math, Vol. 2, No. 4, pp. 597–608, 2009, doi: 1998-6262.
[51] Perera, R., Fang, S. E., and Ruiz, A., Application of Particle Swarm Optimization and Genetic Algorithms to Multiobjective Damage Identification Inverse Problems with Modelling Errors, Meccanica, Vol. 45, No. 5, pp. 723–734, 2010, doi: 10.1007/s11012-009-9264-5.
[52] Kaveh, A., Rad, S. M., Hybrid Genetic Algorithm and Particle Swarm Optimization, Iran. J. Sci. Technol. Trans. B Eng., Vol. 34, No. 1, 2010, pp. 15–34.
[53] Sandesh, S., Shankar, K., Application of a Hybrid of Particle Swarm and Genetic Algorithm for Structural Damage Detection, Inverse Probl. Sci. Eng., Vol. 18, No. 7, 2010, pp. 997–1021.
[54] Sandesh, S., Krishnapillai, S., Structural Damage Detection Using a Hybrid Particle Swarm Algorithm S., World J. Model. Simul., Vol. 7, No. 4, 2011, pp. 290–298. doi: 10.1260/1369-4332.14.3.533.
[55] Sheikhalishahi, M., Ebrahimipour, V., Shiri, H. Zaman, H., and Jeihoonian, M., A Hybrid GA-PSO Approach for Reliability Optimization in Redundancy Allocation Problem, Int. J. Adv. Manuf. Technol., Vol. 68, No. 1–4, 2013, pp. 317–338.
[56] Sharma, D., Gaur, P., and Mittal, A. P., Comparative Analysis of Hybrid GAPSO Optimization Technique with GA and PSO Methods for Cost Optimization of an Off-Grid Hybrid Energy System, Energy Technol. Policy, Vol. 1, No. 1, 2014, pp. 106–114. doi: 10.1080/23317000.2014.969450.
[57] Garg, H., A hybrid PSO-GA Algorithm for Constrained Optimization Problems, Appl. Math. Comput., Vol. 274, 2016, pp. 292–305. doi: 10.1016/j.amc.2015.11.001.
[58] Abdel Wahab, M., Belaidi, I., Khatir, T., Hamrani, A., Zhou, Y. L., and Wahab, M. A., Multiple Damage Detection in Composite Beams Using Particle Swarm Optimization and Genetic Algorithm, Mechanics, Vol. 23, No. 4, 2017, pp. 514–521. doi: 10.5755/j01.mech.23.4.15254.
[59] Hoseini Vaez, S. R., Fallah, N., Damage Detection of Thin Plates Using GA-PSO Algorithm Based on Modal Data, Arab. J. Sci. Eng., Vol. 42, No. 3, 2017, pp. 1251–1263. doi: 10.1007/s13369-016-2398-6.
[60] Friswell, M. I., Penny, J. E. T., and Garvey, S. D., Parameter subset Selection in Damage Location, Inverse Probl. Eng., Vol. 5, No. 3, 1997, pp. 189–215. doi: 10.1080/174159797088027660.
[61] Gao, Y., Spencer, B. F., Damage Localization Under Ambient Vibration Using Changes in Flexibility, Earthq. Eng. Eng. Vib., Vol. 1, No. 1, 2002, pp. 136–144. doi: 10.1007/s11803-002-0017-x.
[62] Ewins, D. J., Modal Testing: Theory and Practice (Mechanical Engineering Research Studies), 1984.
[63] Eberhart, R., Kennedy, J., Particle Swarm Optimization James, in Proceedings of ICNN’95 - International Conference on Neural Networks, Vol. 4, 1995, pp. 1942–1948. doi: 10.1109/TST.2016.7442504.