ارزیابی کارایی شبکه عصبی مصنوعی در پیش بینی روند بیابان زایی با استفاده از سیستم اطلاعات جغرافیایی GIS (مطالعة موردی: دشت دهلران، ایلام)
محورهای موضوعی : توسعه سیستم های مکانیثریا یعقوبی 1 , مرزبان فرامرزی 2 , حاجی کریمی 3 , جواد سروریان 4
1 - دانش آموخته کارشناسی ارشد مرتع و آبخیزداری، دانشگاه ایلام
2 - استادیار دانشکده کشاورزی، دانشگاه ایلام
3 - دانشیار دانشکده کشاورزی، دانشگاه ایلام
4 - استادیار دانشکده کشاورزی، دانشگاه ایلام
کلید واژه: دشت دهلران, سیستم اطلاعات جغرافیایی, شبکه عصبی مصنوعی, مدل ایرانی ارزیابی پتانسیل بیابان زایی,
چکیده مقاله :
یکی از مشکلات اصلی مناطق خشک و نیمهخشک حاکمیت پدیده بیابان زایی است. بنابراین، شناخت و پیشبینی عوامل مؤثر در پیشرفت پدیده بیابانزایی میتواند در مدیریت بهتر این مناطق مؤثر واقع شود. هدف از این تحقیق ارزیابی صحت مدل شبکه عصبی مصنوعی در پیشبینی روند بیابانزایی و انتخاب مؤثرترین معیار بیابانزایی در دشت دهلران با استفاده از مدل ایرانی ارزیابی وضعیت بیابانزایی (IMDPA) است. در این روش دو معیار آب و اقلیم به عنوان عوامل مؤثر در بیابانزایی انتخاب شدند. برای معیار اقلیم سه شاخص بارش سالانه، شاخص SPI و تداوم خشکسالی و برای معیار آب پنج شاخص افت آب، نسبت جذب سدیم، کلر، هدایت الکتریکی و کل مواد محلول در آب ارزیابی شد. با استفاده از مدل مذکور هر شاخص امتیازدهی شد. سپس با میانگین هندسی نقشههای معیار و شدت بیابانزایی در نرمافزار ArcGIS®93 برای دوره مورد نظر تهیه شد. در نهایت دادهها به شبکه عصبی مصنوعی جهت پیشبینی وارد شدند. نتایج نشاندهنده کارایی بالای مدلهای شبکه عصبی مصنوعی در پیشبینی روند بیابانزایی بود به گونهای که دقت شبکه بالای 80 درصد و میانگین مربعات خطا کمتر از یک بدست آمد. همینطور بر اساس نتایج بدست آمده برای دوره پیشبینی شده مهمترین معیارهای احتمالی تأثیرگذار بر شدت بیابانزایی منطقه به ترتیب معیارهای اقلیم و آب با متوسط وزنی 2 (متوسط زیر کلاس 1، 2 و 3)، 84/1 (متوسط زیر کلاس 1 و 2) رتبهبندی گردیدند.
Desertification is recognized as a main problem in the arid and semi-arid areas. Therefore, identification and prediction of the effective factors in development of desertification are very important for better management of these areas. The main purpose of this study was evaluating the accuracy of an artificial neural network model for predicting the desertification process and selects the most effective criteria on desertification in the Dehloran plain by using the Iranian model for desertification potential assessment (IMDPA). In IMDPA model, water and climatic were selected as effective factors in desertification. In this model, three indicators for climate criteria; annual precipitation, drought index (Standardized precipitation index; SPI and continued drought and for water criteria; ground water table depletion, sodium absorption ratio, Cl, electrical conductivity (EC) and total dissolved solids were evaluated. Each index was rated using of IMDPA model. Then desertification intensity and criteria maps were prepared using a geometric average for predicting period in ArcGIS®9.3. Final data were entered into neural network to predict. The results showed that the neural network model has a high efficiency for predicting the desertification process in the study area. The accuracy of the model was about 80% and mean square error (MSe) was less than one. In addition, the climate factor and the index of EC were found the most effective variables for predicting the desertification process. In 2015-2016 predicted the most important probable criteria affecting the intensity of desertification were climate and water with weighted average 2 (moderate in sub-class1, 2 and 3), 1.84 (moderate in sub-class 1and 2), respectively.
