پیش بینی و روند تغییرات کاربری و پوشش اراضی با استفاده از روشهای تلفیقی زنجیره مارکوف و سلولهای خودکار و مدلساز تغییر سرزمین در دشت سیستان
محورهای موضوعی : منابع طبیعی و مدیریت زیست محیطیزهره هاشمی 1 , حمید سودایی زاده 2 , محمد حسین مختاری 3 , محمد علی حکیم زاده اردکانی 4 , کاظم کمالی علی آبادی 5
1 - گروه مدیریت و کنترل بیابان، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد ، یزد ، ایران
2 - دانشیار گروه مدیریت و کنترل بیابان، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد ، یزد ، ایران
3 - دانشیار گروه مدیریت و کنترل بیابان، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد ، یزد ، ایران
4 - دانشیار گروه مدیریت و کنترل بیابان، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد ، یزد ، ایران
5 - دانشیار گروه مدیریت و کنترل بیابان، دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد ، یزد ، ایران
کلید واژه: دشت سیستان, مدل ساز تغییر سرزمین, تصاویر لندست, مدل سلول های خودکار, تغییر کاربری اراضی,
چکیده مقاله :
در برنامهریزی و مدیریت بهینه منابع طبیعی، آگاهی از چگونگی تغییرات پوشش اراضی و کاربری اراضی و عوامل ایجادکننده آن بسیار ضروری هستند. در این زمینه دادههای سنجش از دور، از قابلیت بالایی برای بررسی تغییرات زمانی و مکانی پوشش اراضی و کاربری اراضی برخوردار هستند. هدف از تحقیق حاضر پیشبینی و بررسی روند تغییرات کاربری اراضی و پوشش اراضی در منطقه زهک دشت سیستان میباشد. بدین منظور نقشههای کاربری و پوشش اراضی از تصاویر ماهوارهای لندست سالهای 1987، 2001 و 2018 به روش طبقهبندی نظارت شده، ماشین بردار پشتیبان تهیه شــد. سپس با استفاده از نقشه کاربری اراضی سالهای 1987 و 2001 پوشش اراضی در سال 2018 پیشبینی شد. کاربرد نقشه کاربری اراضی سالهای 2001 و 2018 پوشش اراضی مربوط به سال 2030 با استفاده از روش تلفیقی زنجیره مارکوف و سلولهای خودکار پیشبینی شد. برای تحلیل روند تغییرات کاربری و پوشش زمین سال 2001-1987، 2018-2001 و سال 2030-2018 از مدلساز تغییر سرزمین استفاده شد. نتایج نشان داد در دوره زمانی 2001 – 1987 سطوح کاربریهای زراعت آبی 2013 هکتار، پوشش درختی 1117 هکتار، منابع آب 2391 و اراضی بایر 9535 هکتار کاهش یافته است. همچنین مساحت کاربریهای منطقه مالچپاشی 192 هکتار و تپههای ماسهای 14864 هکتار افزایش داشتند. طی بازه زمانی 2018 – 2001 سطوح کاربریهای زراعت آبی 3533 هکتار و اراضی بایر 3707 هکتار کاهش و مساحت کاربریهای پوشش درختی 313 هکتار، منابع آب 5385 هکتار، منطقه مالچپاشی 247 هکتار و تپههای ماسهای با 1295 هکتار افزایش داشته است. در پیشبینی دوره زمانی 2030 – 2018 سطوح کاربریهای زراعت آبی به میزان 1098 هکتار، تپههای ماسهای 527 هکتار و اراضی بایر 2020 هکتار کاهش مییابد. در این پیشبینی عرصه کاربریهای پوشش درختی 16 هکتار، پهنههای آبی 3607 هکتار، منطقه مالچپاشی 23 هکتار افزایش خواهد یافت.
In optimal planning and management of natural resources, knowledge of how land cover changes and land use and the factors that cause it are very necessary. In this field, remote sensing data have high potential to study temporal and spatial changes in land cover and land use. The purpose of presence study is prediction and assessment of the trend of land use changes and land cover in Zahak area of Sistan plain. For this purpose, land use and cover maps were prepared from landsat satellite images using support vector machine method of supervised classification in 1987, 2001 and 2018. Then, using the land use map in 1987 and 2001, land cover in 2018 was predicted. Land use maps for 2001 and 2018 and land cover for 2030 was predicted using integrated method of Markov chain and automated cells. To analyze the trend of land use changes and land cover since 1987- 2001, 2001- 2018 and 2018- 2030, Land change modeler was used. Results indicated that areas of watery agriculture 2013 hectares, tree cover 1117 hectares, water areas 2391 hectares and barren lands 9535 hectares has decreased since 1987- 2001. Also, the mulching area uses area 192 hectares, and sand dunes 14864 hectares were increased. During the period 2001- 2018, the areas of watery agriculture land uses 3533 hectares and barren lands 3707 hectares has decreased and uses area tree cover 313 hectares, water areas 5385, mulching area 247 hectares, and sand dunes 1295 hectares were increased. In the forecasting the time period 2018- 2030, the area of uses watery agriculture will be 1098 hectares, sand dunes 527 hectares, and barren lands 2020 hectares are reduced. In this forecast, land use of tree cover 16 hectares, water area 3607 hectares, and mulching area 23 hectares will increase.
1. Abdelahei A.H, Khabazi M, Dorrani Z. 2019. Modeling and predicting land use changes in Lahijan with a sustainable development approach. Journal of Sustainable city, 2(4): 17-30. (In Persian).
2. Aghaei M, Khavarian H, Mostafazadeh R. 2020. Prediction of land use changes using the CA-Markov and LCM models in the Kozehtopraghi watershed in the Province of Ardabil. Watershed Management Research, 33(128): 91-107. (In Persian).
3. Arabi AliAbad F. Zare M, Ghafarian Malmiri H. R. 2021. Predicting land cover changes using the combined Markov chain and Automated cells (Case study: Shirkooh Basin). Geography and development, 19(62): 251-266. (In Persian).
4. Arekhi S. 2014. Predicting the trend of spatial land use changes using LCM model in GIS environment (Case study: Sarableh area). 2014. Research on protection and conservation of forests and rangelands in Iran, 12(1): 1-19. (In Persian).
5. Bakr N. 2010. Monitoring land cover changes in a newly reclaimed area of Egypt using multitemporal Landsat data. Applied Geography, 30(4): 592 -605.
6. Balzter H. 2000. Markov chain models for vegetation dynamics. Ecological Modelling, 126(2): 139-154.
7. Chaudhary B.S, Saroha G.P, Yadav M. 2008. Human Induced Land Use Land Cover Changes in Northern Part of Gurgaon District, Haryana, India: Natural Resources Census Concept. Journal of Human Ecology, 23(3): 243-252.
8. Cheruto M.C, Kauti M.K, Kisangau P.D, Kariuk P. 2016. Assessment of Land Use and Land Cover Change Using GIS and Remote Sensing Techniques: A Case Study of Makueni County, Kenya. Journal of Remote Sensing & GIS, 5(4): 1- 6.
9. Chowdhury M, Hasan M. E, Abdullah-Al Mamun M.M. 2020. Land use/land cover change assessment of Halda watershed using remote sensing and GIS. The Egyptian Journal of Remote Sensing and Space Science, 23(1): 63-75.
10. Comprehensive Consulting Engineers of Iran. 2004. Comprehensive studies of desertification and combating wind erosion in Sistan plain. 302 p. (In Persian).
11. Das S, Angadi D. 2020. Land use-land cover (LULC) Transformation and its Relation with Land Surface Temperature Changes: A Case Study of Barrackpore Subdivision, West Bengal, India, Remote Sensing Applications: Society and Environment, 19: 1-28.
12. Eskandari Dameneh H, Khosravi H, Abolhasani A. 2019. Assessing the Effect of Land Use Changes on Groundwater Quality of Zarand Plain using Satellite Images and Geostatistical. Journal of Natural Environmental Hazards (JNEH), 8(20): 67-82. (In Persian).
13. Falahatkar S, Hosseini S.M, Maheini H, Hauobi Sh. 2016. Predicting land use changes using LCM model. Environmental research, 7(13): 3-361. (In Persian).
14. Faramarzi M, Amini D, Mirzaei N, Mosavi M. 2020. Assessment of relationships among groundwater level, drought and land-use changes (Case Study: Eyvan County, Ilam Province). Journal of Environmental Science and Technology, 13(1): 25-43. (In Persian).
15. Fatehelahi Rodbari, S.M, Khan Mohammadi M, Nasir Ahmadi K. 2018. Modeling land use change using land change modeling (LCM) case study of Neka city. Natural ecosystems of Iran, 9(1): 53-69. (In Persian).
16. Fathizad H, Karimi H, Tazeh M, Tavakoli. 2014. Prediction of Land Use and Land Cover Changes in Arid and Semi-Arid Regions Using Satellite Images and Markov Chain Models (Case study: Doviraj Basin, Ilam Province). Desert manangement, 2(3): 61-76. (In Persian).
17. Fathizad H, Zare M, Karimi H, Khanamani A. 2018. Spatio-temporal Modeling of Landscape Changes using Markov Chain Compilation Model and Automated Cells (Case Study: Arid and Semi-Arid Area Dehloran). Arid Biome Scientific and Research Journal, 8(1): 11-26.
18. Kohonen T. 1996. Self-Organization and Associative Memory, Springer-Velag, 312p.
19. Lambin E.F. 1997. Modelling and monitoring land-cover change processes in tropical regions, Progress in Physical Geography, 21: 375–393.
20. Mas J. F, Kolb M, Paegelow M, Camacho Olmedo M.T. 2014. Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling and software, 51: 94-111.
21. Meshesha T.W, Tripathi S.K, Khare D.M. 2016. Analyses of land use and land cover change dynamics using GIS and remote sensing during 1984 and 2015 in the Beressa Watershed Northern Central Highland of Ethiopia. Model. Earth Syst. Environ, 2: 1–12.
22. Mir Alizadehfard S. R, Alibakhshi S.M. 2016. Monitoring and forecasting of land use change by applying Markov chain model and land change modeler (Case study: Dehloran Bartash plains, Ilam). Remote Sensing and Geographic Information System in Natural Resources, 7(2): 33- 45. (In Persian).
23. Mirhosseini S.M, Jamali A.A, Hosseini S.Z. 2016. Investigating and Predicting the Extension of Dunes Using Land Change Modeler (LCM) in the North West of Yazd, Iran. Desert, 21(1): 76-90.
24. Mohammadi Sh, Habashi Kh, Pourmanafi S. 2018. Monitoring and prediction land use/ land cover changes and its relation to drought (Case study: sub-basin Parsel B2, Zayandeh Rood watershed). Remote Sensing and Geographic Information System in Natural Resources, 9(1): 24-39. (In Persian).
25. Msofe N.K, Sheng L, Lyimo J. 2019. Land use change trends and their driving forces in the Kilombero Valley Floodplain, Southeastern Tanzania. Sustainability, 11(2): 505.
26. Mukhopdhaya S. 2016. Land Use and Land Cover Change Modelling Using CA-Markov Case Study: Deforestation Analysis of Doon Valley. 3(1):1-5.
27. Munthali M.G, Mustak S, Adeola A, Botai J, Singh S.K, Davis N. 2020. Modelling land use and land cover dynamics of Dedza district of Malawi using hybrid Cellular Automata and Markov model. Remote Sensing Applications: Society and Environment, 17: 1-12.
28. Onwuka S, Eneche P, Ismail N. 2017. Geospatial Modeling and Prediction of lLand Use/Cover Dynamics in Onitsha Metropolis, Nigeria: A Sub-pixel Approach. Current J Appl Sci TechnolJournal of Applied Science and Technology, 22(6):1–18.
29. Parker D.C, Manson S.M, Deadman M.J. 2003. Multi agent systems for the simulation of land use and land cover change: a Review, Annals of the Association of American Geographers, 43: 314–337.
30. Patil SP, Jamgade MB. 2019. regular issue. Int J Innov Technol Explor Eng, 8(10):484–490.
31. Reddy CS, Singh S, Dadhwal VK, Jha CS, Rao NR, Diwakar PG. 2017. Predictive modelling of the spatial pattern of past and future forest cover changes in India. J Earth Syst Science, 26(1): 1-16.
32. Salehi N, Ekhtesasi M.R, Talebi A. 2019. Predicting locational trend of land use changes using CA-Markov model (Case study: Safarod Ramsar watershed). Remote Sensing and Geographic Information System in Natural Resources, 10 (11): 106-120. (In Persian).
33. Stephenne N, Lambin E. 2001. A dynamic simulation model of land-use changes in Sudano-sahelian countries of Africa (SALU). Agriculture, Ecosystems & Environment, 85(1): 145-161
34. Surabuddin Mondal M, Sharma N, Kappas M, Garg PK. 2019. CA Markov modeling of land use land cover dynamics and sensitivity analysis to identify sensitive parameter(s). Int Arch Photogramm Remote Sens Spat Inf Science, 13:723–729.
35. Weng Q. 2002. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. Journal of Environmental Management, 64(3): 273-284.
36. Yasmine M, Pedro C, Joel S Mario C. 2015. Land Cover Mapping Analysis and Urban Growth Modelling Using Remote Sensing Techniques in Greater Cairo Region - Egypt. ISPRS International Journal of Geo -Information, 4: 1750 -1769.
37. Zhang Z, Baoqing H, Weiguo J, Haihong Q. 2021. Identification and scenario prediction of degree of wetland damage in Guangxi based on the CA-Markov model. Ecological Indicators, 127: 1-13.
38. Zubair AO. 2006. Change detection in land use and land cover using remote sensing data and GIS, (A case study of Ilorin and its environs in Kwara State), The department of Geography, University of Ibadan in Partial Fulfillment for the award of master of science, 44 pp.