یک روش ترکیبی پیشبینی بلندمدت تقاضا در زنجیره تأمین انرژی الکتریکی صنایع تولید فلزات اساسی در حضور دادههای ناقص
محورهای موضوعی : مهندسی برق قدرتسپهر معلم 1 , رویا محمدعلی پوراهری 2 , غضنفر شاهقلیان 3 , مجید معظمی 4 , سید محمد کاظمی 5
1 - دانشکده مهندسی صنایع، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
2 - دانشکده مهندسی صنایع، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
3 - دانشکده مهندسی برق، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران|مرکز تحقیقات ریزشبکه های هوشمند، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
4 - دانشکده مهندسی برق، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران|مرکز تحقیقات ریزشبکه های هوشمند، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
5 - دانشکده مهندسی صنایع، واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
کلید واژه: تبدیل موجک, ماشین یادگیری شدید تنظیم شده, میانگین مطلق درصد خطا, زنجیره تأمین انرژی الکتریکی, حافظه کوتاه مدتبلند, پیشبینـی بلند مـدت,
چکیده مقاله :
رشد اقتصادی هر کشوری ارتباط زیادی با زیرساخت های زنجیره تأمین انرژی الکتریکی و قابلیت دسترسی کم هزینه به آن دارد. بالا بردن تاب آوری زنجیره تأمین انرژی الکتریکی جهت قابلیت پاسخگویی به تقاضای لحظه ای مشترکین پرمصرف و استراتژیک چالشی است که بدون در نظر گرفتن پیش بینی بلندمدت تقاضا و برنامه ریزی توسعه یکپارچه این زنجیره ممکن نخواهد بود. در این مقاله یک رویکرد پیش بینی بلندمدت تقاضا در زنجیره تأمین انرژی الکتریکی صنایع سنگ آهن اسپیدان اصفهان با استفاده از ترکیب تبدیل موجک، شبکه عصبی مبتنی بر یادگیری عمیق (LSTM) و در نهایت ادغام نتایج با تکنیک داده کاوی مبتنی بر ماشین یادگیری شدید تنظیم شده پیشنهاد شده است. شرکت مورد مطالعه در این تحقیق از تأمین کنندگان اصلی مواد اولیه در زنجیره تأمین صنایع تولید فلزات اساسی و یکی از ده صنعت انرژی بر در زنجیره تأمین انرژی الکتریکی استان اصفهان است. تنها اطلاعات موجود و در دسترس از این شرکت سری زمانی سیگنال تقاضای تاریخی انرژی الکتریکی این صنعت در یک بازه زمانی 40 ماهه و به صورت 24 ساعته می باشد. داده ها در سری زمانی مورد مطالعه منقطع است به طوریکه فقط 50 درصد از داده ها دارای مقدار و50 درصد مابقی صفر می باشد. این نقصان داده و عدم امکان دسترسی به داده های مکمل و ویژگی های مؤثر جهت پیش بینی باعث کاهش تراکم داده ها شده و امکان پیش بینی تقاضای بلندمدت را نسبت به سری های زمانی پیوسته با مشکلات بیشتری روبرو می کند. آنالیزآماری بکار رفته نشان داد که داده های سالانه و فصلی از توزیع نرمال پیروی نمی کند و دارای تورش و ناهمگونی بالایی می باشد. روش پیشنهادی و نتایج حاصل از آن با سایر روش های موجود مورد مقایسه قرار گرفته است. نتایج حاصل از 10 تکرار روش های ماشین یادگیری شدید نشان می دهد که تکنیک (RELM) با سطح اطمینان بالای 95% از سایر روش های یادگیری ماشین مؤثر تر و نتایج دقیق تری دارد.
The economic growth of any country has a lot to do with the infrastructure of the electrical energy supply chain and the ability to access it at low cost. Increasing the resilience of the electric energy supply chain in order to be able to respond to the real time demand of high-consumption and strategic consumers is a challenge that will not be possible without considering long-term demand forecasting and integrated development planning of this chain. This paper presents a long-term demand forecasting approach in the electrical energy supply chain of Isfahan's Espidan iron stone industries. This approach is a combination of wavelet transform, long short-term memory (LSTM) network and finally integrating the results with data-mining technique based on machine learning. The company studied in this research is one of the main suppliers of raw materials in the supply chain of basic metal production industries and one of the ten energy-intensive industries in the electrical energy supply chain of Isfahan province. The only information available from this company is the daily time series signal of the historical electrical energy demand of this industry in a period of 40 months. The data in the studied time series is interrupted so that only 50% of the data has a value and the remaining 50% is zero. This lack of data and the impossibility of access to supplementary data and effective features for forecasting has reduced the density of data and the possibility of long-term demand forecasting faces more problems than continuous time series. The used statistical analysis showed that the annual and seasonal data do not follow the normal distribution and have high distortion and heterogeneity. The proposed method and its results have been compared with other available approaches. The results of 10 iterations of extreme learning machine methods show that the RELM technique with a high confidence level of 95% is more effective than other machine learning methods and has more accurate results.
[1] S. N., Emenike, and G. Falcone, “A review on energy supply chain resilience through optimization,” Renewable and Sustainable Energy Reviews, vol. 134, pp. 110088, Dec. 2020, doi: 10.1016/j.rser.2020.110088.
[2] A. Dedinec, S. Filiposka, A. Dedinecb, and L. Kocarev, “Deep belief network based electricity load forecasting: An analysis of Macedonian case,” Energy, vol. 115, pp. 1688–1700, Nov. 2016 doi: 10.1016/j.energy.2016.07.090.
[3] M. Moazzami, S. J. aldin Hosseini, H. Shahinzadeh, G. B. Gharehpetian, and J. Moradi, “SCUC Considering Loads and Wind Power Forecasting Uncertainties Using Binary Gray Wolf Optimization Method,” Majlesi Journal of Electrical Engineering, vol. 12, no. 4, pp.15–24, Dec. 2018.
[4] O. Abedinia, N. Amjady, and H. Zareipour, “A new feature selection technique for load and price forecast of electrical power systems,” IEEE Transactions on Power Systems, vol. 32, no. 1, pp. 62–74, Jan. 2017, doi: 10.1109/TPWRS.2016.2556620.
[5] W. M. Lin, C. S. Tu, R. F. Yang, and M. T. Tsai, “Particle swarm optimisation aided least-square support vector machine for load forecast with spikes,” IET Generation, Transmission & Distribution, vol. 10, no. 5, pp. 1145–1153, Apr. 2016, doi:10.1049/iet-gtd.2015.0702.
[6] Z. Lin, M. Chen, and Y. Ma, “The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices," arXiv preprint arXiv,” 1009. 5055, Sep. 2010, doi: 10.48550/arXiv.1009.5055.
[7] H. Fang, j. Ma, W. Zhang, H. Yang, F. Chen, and X. Li, “Hydraulic performance optimization of pump impeller based on a joint of particle swarm algorithm and least-squares support vector regression,” IEEE Access, vol. 8, pp. 203645–203654, Nov. 2020, doi: 10.1109/ACCESS.2020.3036913.
[8] P. Zeng, and M. Jin, “Peak load forecasting based on multi-source data and day-to-day topological network,” IET Generation, Transmission & Distribution, vol. 12, no. 6, pp.1374–1381, Mar. 2018. doi: 10.1049/iet-gtd.2017.0201.
[9] H., Shi, M. Xu, and R. Li, “Deep learning for household load forecasting-A novel pooling deep RNN,” IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 5271–5280, Mar. 2017, doi: 10.1109/TSG.2017.2686012.
[10] H. Jiang, Y. Zhang, E. Muljadi, J. J. Zhang, and D. W. Gao, “A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 3341–3350, Nov. 2016, doi:10.1109/TSG.2016.2628061.
[11] Y. Liu, Y. Sun, D. Infield, Y. Zhao, S. Han, and J. Yan, “A hybrid forecasting method for wind power ramp based on orthogonal test and support vector machine (OT-SVM),” IEEE Transactions on Sustainable energy, vol. 8, no. 2, pp.451–457, Aug. 2016, doi: 10.1109/TSTE.2016.2604852.
[12] J. Nowotarski, and R. Weron, “Computing electricity spot price prediction intervals using quantile regression and forecast averaging,” Computational Statistics, vol. 30, no. 3, pp. 791–803, 2015, doi: 10.1007/s00180-014-0523-0.
[13] M. Rafiei, T. Niknam, J. Aghaei, M. Shafie-Khah, and J. P. S. Catalão, “Probabilistic load forecasting using an improved wavelet neural network trained by generalized extreme learning machine,” IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6961–6971, Feb. 2018. doi: 10.1109/TSG.2018.2807845.
[14] W. Zhang, H. Quan, and D. Srinivasan, “An improved quantile regression neural network for probabilistic load forecasting,” IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 4425–4434, July 2018, doi: 10.17775/CSEEJPES.2016.00080.
[15] Q. Liu, Y. Shen, L, Wu, J. Li, L. Zhuang, and S. Wang, “A hybrid FCW-EMD and KF-BA-SVM based model for short-term load forecasting,” CSEE Journal of Power and Energy Systems, vol. 4, no. 2, pp. 226–237. June 2018, doi: 10.17775/CSEEJPES.2016.00080.
[16] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-term residential load forecasting based on LSTM recurrent neural network,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 841–851, Sep. 2017, doi: 10.1109/TSG.2017.2753802.
[17] M. Moazzami, A. Khodabakhshian, and R. Hooshmand, “A new hybrid day-ahead peak load forecasting method for Iran’s National Grid,” Applied Energy, vol. 101, pp. 489–501, Jan. 2013, doi:10.1016/j.apenergy.2012.06.009.
[18] Z. Bashir, and M. El-Hawary, “Applying wavelets to short-term load forecasting using PSO-based neural networks,” IEEE transactions on power systems, vol. 24, no. 1, pp. 20–27, Jan. 2009, doi: 10.1109/TPWRS.2008.2008606.
[19] R. C. Staudemeyer, and E. R. Morris, “Understanding LSTM--a tutorial into Long Short-Term Memory Recurrent Neural Networks,” arXiv preprint arXiv:1909. 09586, 2019. doi: 10.48550/arXiv.1909.09586.
[20] S. Mujeeb, N. Javaid, M. Ilahi, Z. Wadud, F. Ishmanov, and M. K. Afzal, “Deep long short-term memory: A new price and load forecasting scheme for big data in smart cities,” Sustainability, vol. 11, no. 4, pp. 987, 2019, doi:10.3390/su11040987.
[21] C.J. Kumar, and M. Veerakumari, “Load forecasting of Andhra Pradesh grid using PSO, DE algorithms,” Int J Adv Res Comput Eng Technol, 2012.
[22] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” Journal of machine learning research, vol. 12, no.7, pp.2121–2159, 2011.
[23] T. Tieleman, and G. Hinton, “Lecture 6.5-rmsprop, coursera: Neural networks for machine learning,” University of Toronto, Technical Report, 2012.
[24] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: theory and applications,” Neurocomputing, vol. 70, no. 1-3, pp. 489–501, Dec. 2006, doi: 10.1016/j.neucom.2005.12.126.
[25] P.L. Bartlett, “The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network,” IEEE transactions on Information Theory, vol. 44, no. 2, pp. 525–536, Mar. 1998, doi: 10.1109/18.661502.
[26] A. Amidi, M. GH. Vahidi Asl, “Mathematical statistics,” University Publication Center, 1378.
[27] K. Atashgar, “Introduction to design of experiment and tguchi metod,” Publications of Malik Ashtar University of Technology, 1397.
_||_