Legendre wavelet method for solving Hammerstein integral equations of the second kind
محورهای موضوعی : Applied MathematicsSh Javadi 1 , J Saeidian 2 , F Safari 3
1 - Faculty of Mathematical Sciences and Computer, Kharazmi University, 50
Taleghani avenue, Tehran 15618-36314, Iran
2 - Faculty of Mathematical Sciences and Computer, Kharazmi University, 50
Taleghani avenue, Tehran 15618-36314, Iran
3 - Faculty of Mathematical Sciences and Computer, Kharazmi University, 50
Taleghani avenue, Tehran 15618-36314, Iran
کلید واژه: Legendre wavelets, Fredholm-Hammerstein integral equations, Volterra-Hammerstein integral equations, Newton', s method, Operational matrix,
چکیده مقاله :
An ecient method, based on the Legendre wavelets, is proposed to solve thesecond kind Fredholm and Volterra integral equations of Hammerstein type.The properties of Legendre wavelet family are utilized to reduce a nonlinearintegral equation to a system of nonlinear algebraic equations, which is easilyhandled with the well-known Newton's method. Examples assuring eciencyof the method and its superiority are presented.
[1] K. E. Atkinson, The Numerical Solution of Integral Equations of The
Second Kind, Cambridge University Press, Cambridge, 1997.
[2] S. M. Berman, A. L. Stewart, A Nonlinear Integral Equation for Visual
Impedance, Biol. Cybernetics 33 (1979) 137{141.
[3] A.M. Bica, M. Curila, S. Curila, About a numerical method of successive
interpolations for functional Hammerstein integral equations, J. Comput.
Appl. Math. 236 (2012) 2005{2024.
[4] A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen,
Acta Math. 54 (1930) 117{176.
[5] H. R. Thieme, On a class of Hammerstein integral equations, Manuscripta
Math. 29 (1979) 49{84.
[6] J. Banas, J. Rocha Martin, K. Sadarangani, On solutions of a quadratic
integral equation of Hammerstein type, Math. Comput. Model. 43 (2006)
97{104.
[7] J. Banas, Integrable solutions of Hammerstein and Uryshon integral
equations, J. Austral. Math. Soc. (A) 46 (1989) 61{68.
[8] D. ORegan, Existence results for nonlinear integral equations, J. Math.
Anal. Appl. 192 (1995) 705{726.
[9] D. ORegan, M. Meehan, Existence Theory for Nonlinear Integral and
Integro-dierential Equations, Kluwer Academic Publishers, Dordrecht,
1998.
[10] K. Atkinson, A survey of numerical methods for solving nonlinear integral
equations, J. Int. Eqns. Applics. 4 (1992) 15{46.
[11] M. M. Shamivand, A. Shahsavaran, Numerical solution of Hammerstein
Fredholm and Volterra integral equations of the second kind using block
pulse functions and collocation method, Math. Sci. J.,7 (2011) 93-103.
[12] A. Shahsavaran, E. Babolian, Computational method for solving nonlinear
Fredholm integral equations of Hammerstein type based on Lagrange
interpolation and quadrature method, Math. Sci. J.,5 (2009) 137-145.
[13] S. Kumar, I. Sloan, A new collocation-type method for Hammerstein
equations, Math. Comp. 48 (1987) 585{593.
[14] G. N. Elnagar, M. Kazemi, Chebyshev spectral solution of nonlinear
Volterra-Hammerstein integral equations, J. Comput. Appl. Math. 76
(1996) 147{158.
[15] G. N. Elnagar, M. Kazemi, A cell-averaging chebyshev spectral method
for nonlinear fredholm-hammerstein integral equations, Int. J. Comput.
Math. 60 (1996) 91{104.
[16] H. Kaneko, R. D. Noren, B. Novaprateep, Wavelet applications to the
PetrovGalerkin method for Hammerstein equations, Appl. Numer. Math.
45 (2003) 255-273.
[17] K. Maleknejad, H. Derili, The collocation method for Hammerstein
equations by Daubechies wavelets, Appl. Math. Comput. 172 (2006) 846{
864.
[18] S. Youse, M. Razzaghi, Legendre wavelets method for the nonlinear
VolterraFredholm integral equations, Math. Comput. Simul. 70 (2005) 1{
8.
[19] E. Babolian, F. Fattahzadeh, E. Golpar Raboky, A Chebyshev
approximation for solving nonlinear integral equations of Hammerstein
type, Appl. Math. Comput. 189 (2007) 641{646.
[20] Y. Ordokhani, Solution of nonlinear VolterraFredholmHammerstein
integral equations via rationalized Haar functions, Appl. Math. Comput.
180 (2006) 436{443.
[21] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.
[22] M. Razzaghi, S. Youse, The Legendre wavelets operational matrix of
integration, Int. J. Syst. Sci. 32 (2001) 495{502.
[23] M. Rehman, R. A. Khan, The Legendre wavelet method for solving
fractional dierential equations, Commun. Nonlinear Sci. Numer.
Simulat. 16 (2011) 4163{4173.
[24] M. Razzaghi, S. Youse, Legendre wavelets method for the solution of
nonlinear problems in the calculus of variations, Math. Comput. Model.
34 (2001) 45{54.
[25] F. Awawdeh, A. Adawi, A numerical method for solving nonlinear integral
equations, Int. Math. Forum 4 (2009) 805{817.
[26] Y. Mahmoudi, Wavelet Galerkin method for numerical solution of
nonlinear integral equation, Appl. Math. Comput. 167 (2005) 1119{1129.
[27] E. Babolian, A. Shahsavaran, Numerical solution of nonlinear Fredholm
and Volterra integral equations of the second kind using Haar wavelets and
collocation method, J. Sci. Tarbiat Moallem University, 7 (2007) 213{222.
[28] K. Maleknejad, K. Nedaiasl, Application of Sinc-collocation method for
solving a class of nonlinear Fredholm integral equations, Comput. Math.
Appl. 62 (2011) 3292{3303.