تشخیص رتینوپاتی دیابتی با تحلیل اگزودا در تصاویر شبکیه با استفاده از یادگیری عمیق
محورهای موضوعی : مجله فناوری اطلاعات در طراحی مهندسیملیحه شارعی نیا 1 , سید محمد حسین معطر 2
1 -
2 - هیات علمی گروه کامپیوتر، دانشگاه آزاد اسلامی، واحد مشهد
کلید واژه: استخراج ویژگی, یادگیری عمیق, رتینوپاتی دیابتی, شبکه های عصبی کانولوشن,
چکیده مقاله :
رتینوپاتی دیابتی، عارضهای ناشی از دیابت است که بدلیل تغییرات ایجاد شده در رگهای خونی رخ میدهد. هدف اصلی این مقاله،ارتقاء دقت تشخیص رتینوپاتی دیابتی در تصاویر شبکیه نسبت به روشهای معمول مبتنی بر استخراج بردار ویژگی میباشد. در اینروش ابتدا بر اساس دادههای آموزشی لایه به لایه شبکه عصبی آموزش دیده و در نهایت شبکه عصبی کانولوشن با کمک چهار لایهکانولوشن، چهار لایه ادغام و دو لایه تماماً متصل آموزش دیده و ساخته میشوند. شبکه عصبی کانولوشن ویژگیهای موجود در تصویرشبکیه را آموخته و ویژگیهای مناسب را برای دستهبندی تصاویر استخراج میکند. در این مقاله توانستیم در آزمایشهای خود به بهبودبرای آزمودن روش ،Stare قابل قبولی نسبت به کارهای انجام شدهی قبلی برسیم که با توجه به بررسی 397 نمونه از پایگاه دادهپیشنهادی و بدست آوردن نرخ حساسیت 90 % و صحت 96 % موفقیت روش بر روی این پایگاه داده کاملاً مشهود هست.