New Criterion For Fractal Parameter In Financial Time Series
محورهای موضوعی : Financial and Economic ModellingMehrzad Alijani 1 , bahman banimahd 2 , Ahmad Yaghobnezhad 3
1 - Department of Management and Economics, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Associate Professor in Accounting, Head of Accounting Department, Islamic Azad University- Karaj Branch, Iran
3 - Department of Economic and Accounting, Islamic Azad University of Central Tehran Branch, Tehran, ‎Iran ‎
کلید واژه: R, Simulation, ARFIMA time series, fractal dimension, Hausdorff measure,
چکیده مقاله :
Since calculating the amount of fractal in the ARFIMA time series and increasing its accuracy and bring it closer to reality is very important, this article intends to investigate the possibility of modifying this computational formula by changing the focus criterion and using simulation. In the present paper, by analysing and simulating the fractal parameter for time series ARFIMA model and redefining and reviewing the Fractal mathematical, a fractal calculus and dimension in comparison with Euclidean norms introduced. In this regard, first, a new criterion about fractal or Hausdorff component for measuring the forms of fractal time series introduced, then the effects and functional inquiries using simulation data searched, and some mathematical proofs through simulation of data achieved. The findings showed that, the deviation of the new estimator from the simulated initial value is less, and closer to reality as this new criterion introduced by changing the focus criterion and replacing the mean with the median due to less sensitivity to out-dated data. The new criterion is better for determining the fractal parameter and identifying its degree of effectiveness. Finally, the findings empirically indicated that the proposed criterion is more efficient and better than the others for calculating fractal dimensions.
[1] Abdon, A., Anum, S., Differential and integral operators with constant fractional order and variable fractional dimension, Chaos, Solutions and Fractals, 2019, 127, P. 226-243, Doi: 10.1016/j.chaos.2019.06.014.
[2] Alijani, M., Banimahd, B., Madanchi, M., Study and Research on the Six-Year Process of Bitcoin Price and Return, Advances in Mathematical Finance and Applications, 2019, 4(1), P.45-54.
Doi: 10.22034/amfa.2019.577434.1126.
[3] Bhardwaj, G., Swanson, N. R., An Empirical Investigation of the Usefulness of ARFIMA Models for Predicting Macroeconomic and Financial Time Series, Journal of Econometrics, 2004, 5, P.539-578. Doi: v131y2006i1-2p539-578.html
[4] Box, G. E. P., Jenkins, G. M., Time Series Analysis: Forecasting and Control, 1976, Revised Edition. Holden-Day.
[5] Bartels, R., The Rank Version of von Neumann’s Ratio Test for Randomness, Journal of the American Statistical Association, 1982, 77, P. 40-46. Doi: abs/10.1080/01621459.1982.10477764.
[6] Broock, W. A., Scheinkman, J. A., Dechert, W. D., and LeBaron, B., A Test for Independence Based on the Correlation Dimension, Econometric reviews, 1996, 15, P. 197-235. Doi:abs/10.1080/07474939608800353.
[7] Chattfield, C., The Analysis of Time Series. An introduction, 1975, New York, Chapman and Hall.
[8] Contreras, R. J. E., Palma, W., Statistical analysis of autoregressive fractionally integrated moving average models in R, Computer Stat, 2013, 28, P. 2309–2331. Doi:10.1007/s00180-013-0408-7.
[9] Dacorogna, M., Aste, T., Di Matteo, T., Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development, Journal of Banking and Finance, 2005, 29, P. 827–851. Doi: 10.1016/j.jbankfin.2004.08.004.
[10] Dickey, D., Fuller, W., Distribution of the Estimators for Autoregressive Time Series with a Unit Root, Journal of the American Statistical Association, 1979, 44, P. 427-431. Doi: abs/10.1080/01621459.1979.10482531.
[11] Diebold, F.X., Inoue, A., Long Memory and Regime Switching, Journal of Econometrics, 2001, 105, P.131-159. Doi: org/10.1023/B:CSEM.0000026794.43145.fc.
[12] Eom, C., Oh, J. Jung, W, Relationship between efficiency and predictability in stock price change, Physica, 2008, 387, P. 5511–5517. DOI: 10.1016/j.physa.2008.05.059.
[13] Goodness, C., Aye, M. B., Rangan, G., Nicholas, K., Amandine, N. and Siobhan, R, Predicting BRICS stock returns using ARFIMA models, Applied Financial Economics, 2014, 24, P. 1159-1166. Doi:abs/10.1080/09603107.2014.924297.
[14] Granger, C.W. J., Joyeux, R, an introduction to long–range time series models and fractional differencing Journal of Time Series Analysis, 1980, 1, P. 15–30. Doi: org/10.1111/j.1467-9892.1980.tb00297.
[15] Ghoreishi, S. K., Alijani, M., Dynamic association modeling in 2× 2 contingency tables. Statistical Methodology, 2011, 8(2), P. 242-255. Doi.org/10.1016/j.stamet.2010.10.002.
[16] Granger, C., Hyung, N., Occasional Structural Breaks and Long Memory with an Application to the S&P 500 Absolute Stock Returns, Journal of Empirical Finance, 2004, 11, P.399-421. Doi:10.1.1.464.9432&rep.rep1&type.pdf.
[17] Guangxi, C., Yingying, S., Simulation analysis of multifractal detrended methods based on the ARFIMA process, Chaos, Solutions and Fractals, 2017, 105, P. 235-243. Doi:10.1.1.464.9432&rep.rep1&type.pdf.
[18] Hang, C. N., Palma, W., Estimation of Long-Memory Time Series Models: A Survey of Different Likelihood-Based Methods, Advances in Econometrics, 2005, P. 89-121. Doi 10.1.1.1072.2042&rep.rep1&type.pdf
[19] Hurst, H.E., The Long-Term Storage Capacity of Reservoir. Transactions of the American Society of Civil Engineers, 1951, 11, P. 89-121.
[20] Khodayari, M., Yaghobnezhad, A., Khalili Eraghi, K, A Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment, Advances in Mathematical Finance and Applications, 2020, 5(4), P. 569-581. Doi: 10.22034/amfa.2020.674953.
[21] Jiti, G., Qiying, W. and Jiying, Y., Long-range dependent time series specification, Bernoulli, 2013, 19, P. 1714-1749. Doi: 10.3150/12-BEJ427.
[22] Lo, A.W, Long Term Memory in Stock Market Prices, Econometrica, 1991, 59, P.1719-1739.
Doi: 10.3150/12-BEJ427.
[23] Lieberman, O., Phillips, P. C. B., Expansions for the distribution of the maximum likelihood estimator of the fractional difference parameter, Econometric Theory, , 2004, 20, P. 464–484. Doi: 10.1017/S0266466604203024.
[24] Linton, O. B., Estimating additive nonparametric models by partial Lq norm: the curse of fractionality, Econometric Theory, 2001, 17, P. 1037–1050. Doi: S0266466601176012/type/journal_article.
[25] Mandelbrot, B., Wallis, J., Noah, Joseph and operational hydrology, Water Resources Research, 1968, 4, P. 909–918. Doi:10.1029/WR004i005p00909.
[26] Mototsugu, S., Oliver, L., Nonparametric Neural Network Estimation of Lyapunov Exponents and a Direct Test for Chaos, Journal of Econometrics, 2003, 120, P. 1-33. Doi: 10.1016/S0304-4076(03)00205-7.
[27] Mandelbrot, B., Van, Ness, J.W., Fractional Brownian Motion, Fractional Noises and Application, SIAM Review, 1968, 10. P. 20-35. Doi: abs/10.1137/1010093.
[28] Matilla, G, M., Marín, M. R., Dore, M. I. Ojeda, R. B., Nonparametric Correlation Integral–Based Tests for Linear and Nonlinear Stochastic Processes, Decisions in Economics and Finance, 2014, 37, P. 181-193. Doi: 10.1007/s10203-013-0143-0
[29] Man, K. S., Long memory time series and short term forecasts, International Journal of Forecasting, 2003, 35, P. 477-491. Doi:10.1016/S0169-2070(02)00060-2.
[30] Mandelbrot, B. B., When can price be arbitraged efficiently? A limit to the validity of the random walk and martingale models, Review of Economics and Statistics, 1971, 23, P. 225-236. Doi.org/10.2307/1937966.
[31] Neama, I., Abdulkadhim, F., Simulation Study for some estimators of Exponential Distribution, International Journal of Mathematics of Trend and Technology, 2014, 23, P. 93-98. Doi: 10.14445/22315373/IJMTT-V10P515.
[32] Nasr, N., Farhadi Sartangi, M., Madahi, Z., A Fuzzy Random Walk Technique to Forecasting Volatility of Iran Stock Exchange Index, Advances in Mathematical Finance and Applications, 2019, 4(1), P. 15-30. Doi: 10.22034/amfa.2019.583911.1172.
[33] Régis, B., Magda, M., ARFIMA Process : Tests and Applications at a White Noise Process, A Random Walk Process and the Stock Exchange Index CAC 40, Journal of Economic Computation and Economic Cybernetics Studies and Research, Academy of Economic Studies, Bucharest, 2012, 46 (1), P. 22-39. Doi: /123456789/9331.
[34] Roel, F. Ceballos, F., On The Estimation of the Hurst Exponent Using Adjusted Rescaled Range Analysis, Detrended Fluctuation Analysis and Variance Time Plot: A Case of Exponential Distribution, Imperial Journal of Interdisciplinary Research, 2017, 3, P. 424-434. Doi: /abs/1805.08931
[35] Ray, B., Long Range Forecasting of IBM Product Revenues Using a Seasonal Fractionally Differenced ARMA Model, International Journal of Forecasting, 1993, 9, P. 22-50. Doi: 10.1016/0169-2070(93)90009-C.
[36] Robinson, P. M., The distance between rival nonstationarity fractional processes, Journal of Econometrics, 128, P. 283–300. Doi: 10.1016/j.jeconom.2004.08.015.
[37] Saad, K.M., New fractional derivative with non-singular kernel for deriving Legendre spectral collocation method, Alexandria Engineering Journal, 2019, P. 22–23. Doi: 10.1016/j.aej.2019.11.017.
[38] Sania, Q., Abdullahi, Y., Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu, Chaos, Solitons and Fractals, 2019, 122, P. 111-118. Doi: 10.1016/j.chaos.2019.03.020.
[39] Sowell, F., Maximum likelihood estimation of stationary univariate fractionally integrated time series models, Journal of Econometrics, 1992, 53, P. 165–188. Doi:10.1016/0304-4076(92)90084-5.
[40] Sheinkman, J.A. Leparon, B., Nonlinear Dynamics and stock returns, Journal of Business, 1989, 62, P. 311-338. Doi: 10.1016/j.jeconom.2004.09.014.
[41] Shimotsu, K., and Phillips, P. C. B., Local Whittle estimation of fractional integration and some of its variants, Journal of Econometrics, 2006, 130, P. 209–233. Doi: 10.1016/j.jeconom.2004.09.014.
[42] Sowell, F., Maximum Likelihood Test of Stationary Univariate Fractionally Integrated Time Series Models, Journal of Econometrics, 1992, 53(1), P. 165-188. Doi: 10.1016/0304-4076(92)90084-5.
[43] Tilmann, G., Hana, Š. and Donald, B., Percival Estimators of Fractal Dimension, Assessing the Roughness of Time Series and Spatial Data, 2012, 27, P. 247-277. Doi: 10.1214/11-STS370.
[44] Taherinia, M., The Impact of Investment Inefficiency and Cash Holding on CEO Turnover, Advances in Mathematical Finance and Applications, 2020, 5(4), P. 469-478. Doi: 10.22034/amfa.2020.674945.
[45] Valderio, R., Bovas, A. and Silvia, L., Estimation OF Parameters in ARFIMA Processes: A Simulation Study, Communications in Statistics - Simulation and Computation, 2001. 30(4), P. 787-803.
[46] Viano, M., Deniau, C., Oppenheim, G., Continuous–time fractional ARMA processes, Statistics and Probability Letters, 1994, 21, P. 323– 336. Doi.org/10.1155/2014/264217.
[47] Wang, W., Khan, M.A., Analysis and numerical simulation of fractional model of bank data with fractal fractional Atangana–Baleanu derivative, Journal of Computational and Applied Mathematics, 2020, 369, P. 11-40. Doi: 10.1016/j.cam.2019.112646.
[48] Wantin, W., Muhammad, A., Fatmawatic, P., Kumamde,T., A comparison study of bank data in fractional calculus, Chaos, Solitons and Fractals, 2019, 126, P. 369-384. Doi: 10.1016/j.chaos.2019.07.025.
[49] Zhu, L., Nonparametric Monte Carlo Tests and Their Applications. Lecture Notes in Statistics, Springer, New York 2005. Doi: 10.1007/0-387-29053-2