The Role of Plant Growth-Promoting Rhizobacteria in Alleviating the Adverse Effects of Drought, Heat and Salinity Stresses in Crop Plants
محورهای موضوعی : Journal of Crop Nutrition Science
1 - Assistant Professor, Department of Agriculture, Ramhormoz Branch, Islamic Azad University, Ramhormoz, Iran
کلید واژه: phytohormones, exopolysaccharides, Sustainable agriculture</i>, Beneficial microorganisms, <i>Abiotic stress,
چکیده مقاله :
Climate change and various abiotic stresses, especially, drought, salinity and heat stress on the one hand, and the issue of providing adequate quality food for the growing population of the world on the other hand, have made it necessary to revise the methods of crop production. In these conditions, the use of plant growth-promoting rhizobacteria (PGPR) in the agroecosystems is useful and profitable due to the efficiency of these organisms in regulating plant growth and strengthening the plant's natural defense system. In this paper, considering the importance of modulating the negative effects of abiotic stresses using an environmentally friendly approach to achieve a healthy and sustainable crop system, the mechanisms of modulating abiotic stresses by growth-promoting rhizobacteria have been reviewed and the results of several studies have been presented. Growth promoting rhizobacteria through modification of plant hormone levels, restricting ethylene production, maintaining ion balance, osmolytes accumulation during stress, induction of antioxidant enzymes synthesis and removal of reactive oxygen species, production of extracellular polymeric substances, and improving the uptake of mineral elements and water, moderate the adverse effects of abiotic stresses on plant growth. By identifying useful and native rhizobacteria to each region and investigating the ability of these bacteria in producing the 1-aminocyclopropane-1-carboxylate (ACC) deaminase, balancing the plant hormones levels, producing siderophores, and enhancing solubility of mineral, the field will be provided for the successful use of these microorganisms.
Abd El-Daim, I.A., S. Bejai, I. Fridborg. and J. Meijer. 2018. Identifying potential molecular factors involved in Bacillus amyloliquefaciens 5113 mediated abiotic stress tolerance in wheat. Plant Biol. 20: 271-279. DOI: 10.1111/plb.12680
Abd El-Daim, I.A., S. Bejai. and J. Meijer. 2014. Improved heat stress tolerance of seedling by bacterial seed treatment. Plant Soil. 379: 337-350.
Akbari, Sh. and M. Mojtabaie Zamani. 2020. The effect of Biological and chemica fertilizer managing on morphological traits and yield of corn (Zea mays L.) in Ramhormoz-Iran. J. Plant Prod. Sci. 10(1): 102-116.
Ali, S.K.Z., V. Sandhya, G. Minakshi, N. Kishore, L. Venkateswar Rao. and B. Venkateswarlu. 2009. Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol. Fertil. Soils. 46: 45-55.
Ali, S.Z., V. Sandhya, M. Grover, V.R. Linga. and V. Bandi. 2011. Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. J. Plant Interact. 6(4): 239-246. https://doi.org/10.1080/17429145.2010.545147
Ansary, M.H., H.A. Rahmani, M.R. Ardakani, F. Paknejad, D. Habibi and S. Mafakheri. 2012. Effect of Pseudomonas fluorescent on proline and phytohormonal status of maize (Zea mays L.) under water deficit stress. Ann. Biol. Res. 3: 1054–1062.
Arvin, P., J. vafabakhsh. and D. Mazaheri. 2018. Study of plant growth promoting rhizobacteria (PGPR) and drought on physiological traits and ultimate yield of cultivars of oilseed rape (Brassica spp. L.). J. Agroecol. 9(4):1208-1226.
DOI: 10.22067/jag.v9i4.61808.
Ashraf, M. and M.R. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59: 206-216.
Aslani, A. and M. Mojtabaie Zamani. 2021. The effect of phosphate solubilizing bacteria on the reaction of bread wheat cultivars to late-season heat stress. J. Crop Improv. 23(4):683-698.
https://doi.org/10.22059/jci.2021.305632.2414
Barnawal, D., N. Bharti, D. Maji, C.S. Chanotiya. and A. Kalra. 2012. 1-Aminocyclopropane- 1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol. Biochem. 58: 227–235. DOI:10.1016/j.plaphy.2012.07.008
Bazyar, M., A. Bandehagh, D. Farajzadeh, M. Toorchi. and F. Banaei-Asl. 2015. Effect of inoculation of Pseudomonas fluorescens strain FY32 on some traits in canola cultivars under salt stress in hydroponic system. J. Soil Plant Interact. 6(1): 87-97.
Besharati, H. 2023. Plant growth-promoting bacteria and their application in agriculture. J. Soil Biol. 10(2): 135-162.
10.22092/SBJ.2022.342121.191
Bhagat, N., M. Raghav, S. Dubey. and N. Bedi. 2021. Bacterial exopolysaccharides: insight into their role in plant abiotic stress tolerance. J. Microbiol. Biotechnol. 31(8): 1045-1059. DOI: 10.4014/jmb.2105.05009
Bhodiwal, Sh. and T. Barupal. 2022. Phosphate solubilizing microbes: an incredible role for plant supplements. MOJ Eco. Environ. Sci. 7 (5): 170-172.
Chatterjee, A., A. Shankar, Sh. Singh, V. Kesari, R. Rai, P. Kumar. and L.C. Rai. 2019. Beneficial microorganisms and abiotic stress tolerance in plants. Approaches for enhancing abiotic stress tolerance in plants. CRC. LLC.
DOI: 10.1201/9781351104722-27.
Cheng, Z.Y., E. Park. and B.R. Glick. 2007. 1-Aminocyclopropane-1- carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can. J. Microbiol. 53: 912–918. DOI: 10.1139/W07-050
Egamberdieva, D. 2009. Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol. Plant. 31: 861–864. DOI: 10.1007/s11738-009-0297-0
Eisvand, H. R., H. Kamaei. and F. Nazarian. 2018. Chlorophyll fluorescence, yield and yield components of bread Wheat affected by phosphate bio-fertilizer, zinc and boron under late-season heat stress. Photosynthetica. 56(4), 1287-1296.
Etesami, H. 2018. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicol. Environ. Saf. 147: 175-191. https://doi.org/10.1016/j.ecoenv.2017.08.032
Etesami, H. and D.K. Maheshwari. 2018. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicol. Environ. Saf. 156: 225-246. DOI: 10.1016/j.ecoenv.2018.03.013
Faramarzi, M., A. Alemzadeh. and B. Fakheri. 2022. The effects of Bacillus amyloliquefaciens inoculation on sensitive and tolerant wheat cultivar (Triticum aestivum L.) under salt stress conditions. Cereal Biotechnol. Biochem. 1 (4): 522-534. DOI:10.22126/CBB.2023.8674.1032
Ghasemi, S., K. Siavashi, R. Choukan, K. Khavazi. and A. Rahmani. 2011. Effect of biofertilizer phosphate on grain yield and its components of maize (Zea mays L.) cv. KSC704 under water deficit stress conditions. Seed Plant Prod. 27(2): 219-233. DOI: 10.22092/SPPJ.2017.110433
Glick, B.R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169: 30–39. DOI:10.1016/j.micres.2013.09.009
Gontia‐Mishra, I., S. Sapre, A. Sharma. and S. Tiwari. 2016. Amelioration of drought tolerance in wheat by the interaction of plant growth‐promoting rhizobacteria. Plant Biol. 18(6): 992–1000.
Goswami, M., and S. Deka. 2020. Plant growth-promoting rhizobacteria - alleviators of abiotic stresses in soil: A review. Pedosphere. 30(1): 40–61. DOI:10.1016/S1002-0160(19)60839-8
Grover, M., S. Bodhankar, A. Sharma, P. Sharma, J. Singh. and L. Nain. 2021. PGPR mediated alterations in root traits: way toward sustainable crop production. Front. Sustain. Food Syst. 4 (618230): 1-28.
He, M., Ch. He. and N.Z. Ding. 2018. Abiotic stresses: General defenses of land plants and chances for engineering multistress tolerance. Front. Plant Sci. 9: 1-18. https://doi.org/10.3389/fpls.2018.01771.
Islam, F., T. Yasmeen, Q. Ali, S. Ali, M.S. Arif, S. Hussain. and H. Rizvi. 2014. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol. Environ. Saf. 104: 285–293.
Kamaei, H., H.R. Eisvand, and F. Nazarian. 2018. Effects of planting date, bio-fertilizer containing P solubilizing bacteria and elements foliar application of zinc and boron on physiological and agronomic traits of bread wheat (Aflak cultivar). Iran. J. Field Crops Res. 16(1): 165-179.
Kang, S.M, R. Radhakrishnan, A.L. Khan, M.J. Kim, J.M. Park, B.R. Kim, D.H. Shin. and I.J. Lee. 2014. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol. Biochem. 84: 115–124.
Kazemi Oskuei, B., A. Bandehagh, M.R. Sarikhani. and T. Ghasemzadeh. 2021. Effect of Enterobacter S16-3 as plant growth-promoting rhizobacteria on drought stress reduction in canola (Brassica napus) cultivars. J. Agric. Sci. Sustainable. Prod. 31(4): 49-65.
Khalilzadeh, R., R. Seyed Sharifi. and J. Jalilian. 2018. Growth, physiological status and yield of salt-stressed wheat (Triticum aestivum L.) plants affected by biofertilizer and cycocel applications. Arid. Land Res. Manag. 32(1): 71-90.
Kheirizadeh Arough, Y., R. Seyed Sharifi. and R. Khalilzadeh. 2019. Alleviation of salt stress effects in triticale (× Triticosecale) by bio fertilizers and zinc application. J. Plant Res. (Iran. J. Biol.). 31(4): 801-821.
Khosravi, H. 2019. Response of maize to inoculation with Azotobacter under drought stress conditions. J. water Res. Agri. 33(1): 29-38. https://doi.org/10.22092/jwra.2019.119112
Kordzangeneh, R. and K. Marashi. 2018. Studying the effects of combined application of chemical and biological fertilizers of potassium on yield and yield components of wheat (Triticum aestivum L.) under soil moisture shortage. Env. stresses crop Sci. 11(4): 863-872.
Kumar, M., S. Mishra, V. Dixit, M. Kumar, L. Agarwal, P.S. Chauhan. and C,S. Nautiyal. 2016. Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.). Plant Signal. Behav. 11(1). 1-9.
Mishra, P.K., S.C. Bisht, P. Ruwari, G. Selvakumar, G.K. Joshi, J.K. Bisht, J.E. Bhatt. and H.S. Gupta. 2011. Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with Psychrotolerant Pseudomonads from NW Himalayas. Arch. Microbiol. 193(7): 497-513.
Moradi. L., R. Seyed Sharifi. and S. Khomari. 2018. Response of antioxidant enzymes, chlorophyll content and leaf area index of rye to seed inoculation with plant growth promoting bacteria under salinity conditions. Crop Physiol. J. 10 (38): 77-93.
Mozafari, A., J. Daneshiyan, D. Habibi, A.H. Shiranirad. and A. Asgharzadeh. 2015. Investigation the effect of plant growth promoting rhizobactria on some morphophysiological traits of bread wheat under terminal drought stress conditions. Crop Physiol. J. 7(26): 21-36.
Nakhzari Moghadam, A., N. Samsami, E. Gholinezhad. and A. Rahemi Karizaki. 2019. Effect of water deficit and inoculation with symbiotic micro-organisms on traits of phenological, morphological, agronomic and qualitative properties in soybean. Crop Prod. 12(1): 111-128.
Namarvari, M., G. Fathi, A. Bakhshandeh, M.H. Gharineh. and S. Jafari. 2012. Interaction of end-season drought stress and organic fertilizers on yield of bread wheat (Triticum aestivum). J. Crop Prod. Proc. 2(5) :163-173.
Nemati, A., M. Rafieolhossaini. and A. Danesh-shahkari. 2017. The effect of bacterial inoculation and cow manure on physiological indices, grain yield and yield components of chickpea (Cicer arientum) under drought stress conditions. Env. Stresses Crop Sci. 9(4): 339-351. https://doi.org/10.22077/escs.2017.462
Niknejad, Y., J. Daneshian, A.H. Shirani Rad, H. Pirdashti. and M.H. Arzanesh. 2017. Evaluation the efficiency of growth promoting bacteria on yield and yield components of rice under deficit irrigation and reduced rates of nitrogen. Appl. Field Crops Res. 29(3): 9-19.
Numan, M., S. Bashir, Y. Khan, R. Mumtaz, Z.K. Shinwari, A.L. Khan, A. Khan. and A. Al-Harrasi. 2018. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiol. Res. 209: 21-32. DOI:10.1016/j.micres.2018.02.003
Pereira, S.I.A. and P.M.L. Castro. 2014. Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecol. Eng. 73: 526–535. DOI:10.1016/j.ecoleng.2014.09.060
Safari, D. 2019. Effects of plant growth promoting rhizobacteria (PGPRs) applying on yield and yield components of Almute wheat under drought stress condition. Plant Prod. Genet. 1(1): 13-22
Safdarian, M., H. Askari, M. Soltani Najafabadi. and G.A. Nematzadeh. 2018. Effect of salt-tolerant plant growth-promoting on growth and resistance of wheat (Triticum aestivum L.) in saline environment. Iran. J. Field Crop Sci. 49(1): 45-56.
Saghafi, D., H.A. Alikhani. and B. Motesharezadeh. 2015. Mitigation the effects of salt stress in canola (Brassica napus L.) by plant growth promoting rhizobia. J. Soil Manag. Sustain. 5 (1): 23-41. DOI: 20.1001.1.23221267.1394.5.1.2.3
Sarkar, J., B. Chakraborty. and U. Chakraborty. 2018. Plant growth promoting rhizobacteria protect wheat plant against temperature stress through antioxidant signalling and reducing chloroplast and membrane injury. J. Plant Growth Regul. 37: 1396-1412. DOI:10.1007/s00344-018-9789-8
Sharma, S., J. Kulkarni. and B. Jha. 2016. Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Front. Microbiol. 7: 368. https://doi.org/10.3389/fmicb.2016.01600
Soltani Toolarood, A.A., R. Vafadar, A. Ghavidel. and E. Goli Kalanpa. 2019. Effects of plant growth promoting (PGPR) and the application of sodium chloride on growth of wheat and some of soil biological indices. J. Soil Manag. Sustain. 8(4): 79-93.
Upadhyay, S.K., J.S. Singh, A.K. Saxena. and D.P. Singh. 2012. Impact of PGPR inoculation on growth and antioxidant Status of wheat under saline conditions. Plant Biol. 14: 605–611.
Vocciante, M., M. Grifoni, D. Fusini, G. Petruzzelli. and E. Franchi. 2022. The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Appl. Sci. 12(1231): 1-16. https://doi.org/10.3390/app12031231
Wu, S.C., Z.H. Cao, Z.G. Li, K.C. Cheung. and M.H. Wong. 2005. Effects of biofertilizers containing N-fixer, P and K solubilizer and AM fungi on maize growth: a greenhouse trail. Geoderma. 125:155-166. DOI:10.1016/j.geoderma.2004.07.003
Yao, L.X., Z.S. Wu, Y.Y. Zheng, I. Kaleem. and C. Li. 2010. Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur. J. Soil Biol. 46: 49–54. https://doi.org/10.1016/j.ejsobi.2009.11.002