The study of flood flow hydraulic for determining flood bed and river influences points (Atrak River case study)
محورهای موضوعی : Irrigation and Drainageوحید یزدانی 1 , محمد نظرجانی 2 , حسین علی میرزایی 3
1 - گروه مهندسی آب، مجتمع آموزش عالی تربت جام.
2 - گروه منابع آب، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران.
3 - گروه منابع آب، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران.
کلید واژه: سیلاب, Flood, اترک, Atrak River, hydrology, HEC RAS, Sensitive Analyze, هیدرولوژی, HEC-RAS و آنالیز حساسیت,
چکیده مقاله :
Measures should be taken to make better use of the rivers in the study, construction and exploitation optimized to contain, mitigate risks and minimize the negative consequences and the improvement of the situation in order to meet human needs and protect the environment there. Route investigated in Khorasan Razavi province and city and river Ghochan is Atrak. Physiographic parameters using digital layers carefully 25,000: 1 in ArcGIS and ArcView analysis and were estimated. To estimate the return periods of floods in the area of methods of analysis, reasoning, Deacon, Krieger and Fuller were used. By comparing the flood estimation by different methods, field visits in this area, soil, vegetation, slope, main channel length, physical parameters and geographical limits of the study, ultimately in the sub Atrak (A1 to A6) results of Deacon, Was considered. Different regimes in the river hydraulic model HEC-RAS has been simulated. The results of the flow regime was selected for the river. Then enter the results of the HEC-RAS model in GIS environment due to the topography of the river and the water surface profile.Results indicated that the average depth of the river terraces formed by the left and right on the beach between 5.2 m and the effects of erosion can be seen in more than 50% along the way. Intervals of high erosion potential (H4T4-H3T3-H3T4) more visibility in the population centers, which are thus the threat of riverbank protection programs during the route. With regard to the agricultural land and rivers in designing and building the necessary measures to be considered in this context. The results of the final balance of the river and move the threshold conditions at all levels stable river cross sections showed that 71 percent of the unstable situation in stable situation is the remaining 29%. Results of sensitivity analysis showed that the highest sensitivity to changes in the parameters of the roughness coefficient and flow area is the width of the upper level.
برای استفاده بهتر از رودخانه ها باید اقداماتی در زمینه مطالعات، ساخت سازه ها و بهره برداری بهینه به منظور مهار، کاهش خطرات و به حداقل رساندن تبعات منفی و هم چنین به سازی وضعیت آن در جهت تامین نیازهای بشری و حفظ محیط زیست صورت گیرد. مسیر مورد بررسی در استان خراسان رضوی و شهرستان قوچان و رودخانه اترک می باشد. پارامترهای فیزیوگرافی با استفاده از لایه های رقومی با دقت 25000: 1 در نرم افزارهای ArcGIS و ArcView مورد تجزیه و تحلیل و برآورد قرار گرفت. برای برآورد میزان سیلاب در دوره بازگشت های مختلف از روش های تحلیل منطقه ای، استدلالی، دیکن، کریگر و فولر استفاده شد. با مقایسه سیلاب برآورد شده به روش های مختلف، بازدید های میدانی انجام شده از منطقه، بافت خاک، پوشش گیاهی، شیب حوضه، طول آبراهه اصلی، پارامترهای فیزیکی و اقلیمی محدوده های مورد مطالعه، نهایتاً در زیرحوضه های اترک (A1 تا A6) نتایج روش دیکن، در نظر گرفته شد. رژیم های مختلف هیدرولیکی رودخانه در مورد مدل HEC-RAS شبیه سازی قرار گرفته و در نهایت نتایج از رژیم جریان مناسب برای مسیر رودخانه انتخاب شد. آنگاه با وارد کردن نتایج حاصل از مدل HEC-RAS به محیط GIS با توجه به توپوگرافی رودخانه و پروفیل سطح آب بدست آمد. برای تعیین شدت و میزان فرسایش کناری با اندازه گیری دو فاکتور ارتفاع تراس ها (H) و میزان فعالیت فرسایش (T) کلاسه های زیر تفکیک شده و رودخانه مورد ارزیابی قرار گرفت. برای این منظور ارتفاع تراس ها با استفاده از نرم افزار HEC-RAS محاسبه و در نرم افزار Arcview در سه کلاس (H1 تا H3) پهنه بندی شد و کلاس های T با پیمایش های صحرایی نیز در چهار کلاس (T1 تا T4) تعیین شدند. نتایج مشخص نمود متوسط عمق تراس های تشکیل شده در ساحل چپ و راست رودخانه بین 5-2 متر و آثار فرسایشی در بیش از 50 درصد طول مسیر قابل رویت است. نتایج محاسبات ابعاد رودخانه در حالت تعادل نهایی و شرایط آستانه حرکت در تمام مقاطع پایدار رودخانه مورد مطالعه نشان داد که در 71 درصد از مقاطع عرضی وضعیت ناپایدار و در 29 درصد مابقی وضعیت پایدار می باشد. نتایج مربوط به آنالیز حساسیت نشان داد که بالاترین حساسیت به تغییرات ضریب زبری مربوط به پارامترهای مساحت جریان و عرض سطح فوقانی می باشد.
بهبهانی، م.ر. (1380). هیدرولوژی آب های سطحی، انتشارات دانشگاه تهران. 484 صفحه.
صادقی، سید ح.ر. (1376). بررسی عوامل موثر در وقوع سیل و ارزیابی عوامل کنترل آن، مجله جنگل و مرتع، شماره 29. ص 61-54.
عزیزیان، ا.، نورمحمدی، س. و بهروزنیا، م.ر. (1389). کالیبراسیون از نتایج مدل عددی HEC-HMS در حوضه آنگانگد، (مطالعه موردی: رودخانه زواریان). ششمین همایش ملی علوم و مهندسی آبخیزداری، نور، ایران.
مهدوی، م. (1382). هیدرولوژی کاربردی، چاپ سوم، جلد دوم، انتشارات دانشگاه تهران. 401 صفحه.
میجانی، ک.، قائم مقامی، ش. و امینی زاده، م.ر. (1385). سیلاب و خطرات آن در کرمان. مجموعه مقالات دومین کنفرانس ملی آبخیزداری و مدیریت آب و خاک. کرمان،ایران. ص2126-2130.
محمدی، ا.، مسعودی، ا. و طهماسبی، ا. (1385). ویژگی های سیل رودخانه گرگان رود در ایستگاه مشاهدهای گنبد. مجموعه مقالات دومین کنفرانس ملی آبخیزداری و مدیریت آب و خاک. کرمان،ایران. ص2261-2255.
وطن فدا، م. (1382). بررسی وضعیت سیل در ایران، مسائل و مشکلات. مجموعه مقالات سمینار در پیشگیری و کاهش سیل. ص 302-313.
Afzalimehr, H. and Dey, S (2009). Influence of Bank Vegetation and Gravel Bed on Velocity and Reynolds Stress Distributions, International Journal of Sediment Research, 24, pp: 236-246.
Bertrand, F. and Papanicolaou, A. N (2009). Effects of Freezing and Thawing Process on Bank Stability, World Environmental and Water Resources Congress: Great Rivers, New Mexico.
Choudhury, M. (2002). Flood Routing in River Network Using Equivalent Muskingum Inflow. Journal of Hydrologic Engineering, 7, 6, pp: 413-419.
Cook, A. C. (2008). Comparison of one-dimensional HEC-RAS with two – dimensional FESWMS model in flood inundation mapping. MSc thesis, Purdue university, USA
Kaufmann, R., Faustini, M., Larsen, P., Shirazi, A. (2008). A Roughness-corrected Index of Relative Bed Stability for Regional Stream Surveys, Geomorphology. 99, pp:150- 170.
Minghui, Y., Hongyan, W., Yanjie, L., and Chunyan, H. (2010). Study on th Stability of Noncohesive River Bank, International Journal of Sediment Research, 25, pp: 391-398
Mosaedi, A. (2003). Study of factors increasing flood damages in the north of Iran on august 2001 and 2002. Geophysical Research Abstracts. 5:03945.
Olsen, J. R., Beling, P. A., and Lambert, J. H. (2000). Dynamic models for floodplain management. Journal of Water Resources Planning Management. 126: 167/3–175.
Pappenberger, F. Beven, K. Horritt, M. and Blazkova, S. (2005). Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations, J of Hyd, 302(1-4), pp: 46-69.
Stephen, P., Rice, Jill Lancaster and Paul Kemp, P. (2010). Experimentation at the Interface of Fluvial Geomorphology, Stream Ecology and Hydraulic Engineering and the Development of an Effective, Interdisciplinary River Science, Earth Surface Processes and Landforms, 35, pp: 64-77.
Stephen, R. (2002). Hydrologic investigation by the USGS following the 1996 and 1997 flood in the upper Yellowstone River, Montana. American water resources association, 19th annual Montana section meeting, section one, pp: 1-18.
Stevenson, D. (2009). 1D Hec RAS model and sensivity analysis for River Clair from 1971- 2007, report prepared for international joint commission, international upper Great lakes study, Ottawa.
Tavakoli, M. and Mosaedi, A. (2005). Investigation of flood characteristics of Atrak river on Marave Tapeh region. Proceeding of 2nd national conference on soil and water management (in cd). Kerman. Iran.
Thornes, J. B. (1980). Structural instability and ephemeral channel behavior. Zeitschrift fur Geomorphologie, Supplement band 36, pp: 233-244.
Tokaldany, E. A., Darby, S. E. and Tosswell, P. (2007). Coupling Bank Stability and Bed Deformation Models to Predict Equilibrium Bed Topography in River Bends, Journal of Hydraulic Engineering, 133, 10, pp:1167-1170.
Yang, C. R., and Tsai, C. T. (2000). Development of a GIS based flood information system for floodplain management and damage calculation. Journal of the American Water Resources Association. 36:567/3-577.