ارائه الگویی برای مدیریت همکاریهای تحقیقاتی صنعت- دانشگاه
محورهای موضوعی : مدیریت صنعتیMohammad Rahimpoor 1 , Arman Ahmadizad 2 , Mahin Rahimpoor 3
1 - M.Sc. Industrial Engineering, Kharazmi University, Tehran, Iran
2 - Assistant Professor of Business Management, University of Kurdistan, Sanandaj, Iran
3 - Ph.D. candidate of Science and Technology Policymaking, Mazandaran University, Babolsar, Iran
کلید واژه: تحقیق و توسعه, Research Collaboration, Research and Development, صنعت- دانشگاه, همکاری تحقیقاتی, خروجی پروژه, تأثیر پروژه, Industry-University, Project Impact, Project Outcome,
چکیده مقاله :
این پژوهش مطالعه ای را در باب همکاریهای صنعت و دانشگاه با هدف توسعه کارآمدترین اعمال بمنظور افزایش تأثیر این همکاریها روی قابلیت رقابتی شرکت ها انجام می دهد. نمونه ها بیست و پنج شرکت متمرکز روی تحقیق و توسعه را که در مشارکت با تحقیق بر پایه ای منظم به کار گماشته شده اند، در برمی گیرند. بیش از یکصد پروژه همکاری از طریق مصاحبه با مسئولین، مدیران پروژه و مدیران ارشد اجرایی تحلیل شده است. این مصاحبه ها هم از اطلاعات کیفی و هم از اطلاعات کمی درباره ی موفقیت و عدم موفقیت همکاریها استفاده نموده است. براساس این داده ها، هفت مورد از کارآمدترین اعمال برای مدیریت همکاریها زمانیکه با هم به کار گرفته می شوند و به طور معنی داری در موفقیت دراز مدت همکاری مشارکت دارند، تعریف شده اند. این اعمال عبارتند از: 1) انتخاب پروژه های همکاری که تحقیق و توسعه شرکت را به سرانجام میرسانند؛ 2) انتخاب محققان دانشگاه که اهداف و اعمال ویژه صنعت را درک می کنند؛ 3) انتخاب مدیران پروژه با قابلیت های پوشای کرانی قوی؛ 4) ارتقای دوره های زمانی همکاری بیشتر، 5) میسر ساختن حمایت داخلی مناسب برای مدیریت پروژه؛ 6) تدارک ملاقات های منظم در شرکت بین محققان صنعت و دانشگاه ؛ 7) ایجاد آگاهی از پروژه دانشگاه در شرکت.
This research reports a study of industry-university research collaborations aimed at the development of best practices to enhance the impact of such collaborations on company competitiveness. The data sample involves research-intensive companies which engage in collaborative research on a regular basis. Over 100 different collaborations projects are analyzed through interviews with the responsible project managers and with senior technology officers. The interviewees provided both quantitative and qualitative information about the success and lack of success of the collaborations. Based on these data, seven best practices for managing collaborations have been defined which, when taken together, significantly contribute to the long-term success of the collaboration. These practices are: 1) select collaboration projects that complement company R&D; 2) select university researchers who understand specific industry goals and practices; 3) select project managers with strong boundary spanning capabilities; 4) promote longer collaboration timeframes; 5) provide appropriate internal support for project management; 6) conduct regular meetings at the company between university and industry researchers; 7) build awareness of the university project inside the company.
2. Allen, Thomas J., and Stephen I. Cohen. (1969). Information FLow in Research and Development Laboratories. Administrative Science Quarterly, 14(1), 12-19.
3. Ancona, Deborah G., and David F. Caldwell. (1992). Bridging the Boundary: External Activity and Performance in Organization Teams. Administrative Science Quarterly, 4, 634-665.
4. Board, N. S. (2008). Science and Engineering Indicators. Arlington: National Science Foundation.
5. Bozeman, B. (2000). Technology Transfer and Public Policy: A Review of Research and Theory. Research Policy, 627-655.
6. Calder, E. S. (2007). Best Practices for Industry-University Collaboration. Massachusetts Institute of Technology, Technology and Policy Program. Cambridge.
7. Chesbrough, H. (2003). Open Innovation. Boston: Harvard Business School Press.
8. Cohen, Wesley M, Richard R Nelson, and John P Walsh. (2002, January). Link and Impacts: The Influence of Public Research on Industrial R&D. Management Science, 48(1), 1-23.
9. Cohen, Wesley M., and Daniel A. Levinthal. (1990). Absorptive Capacity: A New Perspective on Learning and Innovation. Administrative Science Quarterly, 35, 128-152.
10. Faulkner, W. (2002). Conceptualizing knowledge used in innovation: a second look at the science-technology distinction and industrial innovation. In P. Q. Stephen Little, Managing Knowledge: An Essential Reader (p. Chap. 7). The Open University.
11. Granovetter, M. S. (1973). The Strength of Weak Ties. The American Journal of Sociology, 78(6), 1360-1380.
12. Hansen, M. T. (1999). The Search-Transfer Problem: The Role of Weak Ties in SHaring Knowledge acoss Organization Subunits. Administrative Science Quarterly, 44, 82-111.
13. Katz, Elihu., and Paul F. Lazarzfeld. (1964). Personal INfluence: The Part Played by People in the Flow of Mass Communications. New York: The Free Press.
14. Lambert, R. (2003). Lambert Review of Business-University Collaboration. London: Department of Trade and Industry.
15. Lee, Y. S. (2000, June). The Sustainability of University-Industry Research Collaboration: An Empirical Assesment. Journal of Technology Transfer, 25(2), 111-133.
16. Maznevski, Martha., and Nicholas Athanassiou. (2007). Bringing the Outside In. In K. I. Nonaka, Knowledge Creation and Management: New Challenges for Managers (pp. 71-72). New York: Oxfor University Press.
17. Nochur, Kumar S., and Thomas J. Allen. (1992). Do Nominated Boundary Spanners Become Effective Technological Gatekeepers? IEEE Transactions on Engineering Management, 39(3).
18. Nonaka, I. (1994). A Dynamic Theory of Organizationa Knowledge Creation. Organization Science, 14-37.
19. Nonaka, Ikujiro, and Hirotaka Takeuchi. (1995). The knowledge-creating company: how japanese companies create the dynamics of innovation. New York: Oxford University Press.
20. Perkmann, Markus, and Kathryn Walsh. (2007). University-industry relationships and open innovation: Towards a research agenda. International Journal of Management Reviews, 9(4), 259-280.
21. Polanyi, M. (1966). The Tacit Dimension. New York: Garden City.
22. Regans, Ray. and Ezra W.Zuckerman. (2001). Networks, Diversity and Productivity: The Social Capital of Corporate R&D Teams. Organization Science, 12, 502-517.
23. Regans, Ray., and Bill McEvily. (2003). Network Structure and Knowledge Transfer: The Effects of Cohesion and Range. Administrative Science Quarterly, 48, 240-267.
24. Schartinger, Doris, Christian Rammer, Manfred M. Fischer, and Josef Frohlich. (2002). Knowledge interaction between universities and industry in Austria: sectoral patterns and determinants. Research Policy, 31, 303-328.
25. Siegel, Donald S., David Waldman, and Albert Link. (2003). Assessing the impact of organizational practices on the relative productivity of university technology transfer offices: an exploratory study. Research Policy, 32, 27-48.
26. UN Millennium Project. (2005). Applying Knowledge in Development.
27. Uzzi, B. (1997). Social Structure and Competition in Interfirm Networks: The Paradox of Embeddedness. Administrative Science Quarterly, 42(1), 35-67.
28. Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin, 6, 80-83.
_||_
2. Allen, Thomas J., and Stephen I. Cohen. (1969). Information FLow in Research and Development Laboratories. Administrative Science Quarterly, 14(1), 12-19.
3. Ancona, Deborah G., and David F. Caldwell. (1992). Bridging the Boundary: External Activity and Performance in Organization Teams. Administrative Science Quarterly, 4, 634-665.
4. Board, N. S. (2008). Science and Engineering Indicators. Arlington: National Science Foundation.
5. Bozeman, B. (2000). Technology Transfer and Public Policy: A Review of Research and Theory. Research Policy, 627-655.
6. Calder, E. S. (2007). Best Practices for Industry-University Collaboration. Massachusetts Institute of Technology, Technology and Policy Program. Cambridge.
7. Chesbrough, H. (2003). Open Innovation. Boston: Harvard Business School Press.
8. Cohen, Wesley M, Richard R Nelson, and John P Walsh. (2002, January). Link and Impacts: The Influence of Public Research on Industrial R&D. Management Science, 48(1), 1-23.
9. Cohen, Wesley M., and Daniel A. Levinthal. (1990). Absorptive Capacity: A New Perspective on Learning and Innovation. Administrative Science Quarterly, 35, 128-152.
10. Faulkner, W. (2002). Conceptualizing knowledge used in innovation: a second look at the science-technology distinction and industrial innovation. In P. Q. Stephen Little, Managing Knowledge: An Essential Reader (p. Chap. 7). The Open University.
11. Granovetter, M. S. (1973). The Strength of Weak Ties. The American Journal of Sociology, 78(6), 1360-1380.
12. Hansen, M. T. (1999). The Search-Transfer Problem: The Role of Weak Ties in SHaring Knowledge acoss Organization Subunits. Administrative Science Quarterly, 44, 82-111.
13. Katz, Elihu., and Paul F. Lazarzfeld. (1964). Personal INfluence: The Part Played by People in the Flow of Mass Communications. New York: The Free Press.
14. Lambert, R. (2003). Lambert Review of Business-University Collaboration. London: Department of Trade and Industry.
15. Lee, Y. S. (2000, June). The Sustainability of University-Industry Research Collaboration: An Empirical Assesment. Journal of Technology Transfer, 25(2), 111-133.
16. Maznevski, Martha., and Nicholas Athanassiou. (2007). Bringing the Outside In. In K. I. Nonaka, Knowledge Creation and Management: New Challenges for Managers (pp. 71-72). New York: Oxfor University Press.
17. Nochur, Kumar S., and Thomas J. Allen. (1992). Do Nominated Boundary Spanners Become Effective Technological Gatekeepers? IEEE Transactions on Engineering Management, 39(3).
18. Nonaka, I. (1994). A Dynamic Theory of Organizationa Knowledge Creation. Organization Science, 14-37.
19. Nonaka, Ikujiro, and Hirotaka Takeuchi. (1995). The knowledge-creating company: how japanese companies create the dynamics of innovation. New York: Oxford University Press.
20. Perkmann, Markus, and Kathryn Walsh. (2007). University-industry relationships and open innovation: Towards a research agenda. International Journal of Management Reviews, 9(4), 259-280.
21. Polanyi, M. (1966). The Tacit Dimension. New York: Garden City.
22. Regans, Ray. and Ezra W.Zuckerman. (2001). Networks, Diversity and Productivity: The Social Capital of Corporate R&D Teams. Organization Science, 12, 502-517.
23. Regans, Ray., and Bill McEvily. (2003). Network Structure and Knowledge Transfer: The Effects of Cohesion and Range. Administrative Science Quarterly, 48, 240-267.
24. Schartinger, Doris, Christian Rammer, Manfred M. Fischer, and Josef Frohlich. (2002). Knowledge interaction between universities and industry in Austria: sectoral patterns and determinants. Research Policy, 31, 303-328.
25. Siegel, Donald S., David Waldman, and Albert Link. (2003). Assessing the impact of organizational practices on the relative productivity of university technology transfer offices: an exploratory study. Research Policy, 32, 27-48.
26. UN Millennium Project. (2005). Applying Knowledge in Development.
27. Uzzi, B. (1997). Social Structure and Competition in Interfirm Networks: The Paradox of Embeddedness. Administrative Science Quarterly, 42(1), 35-67.
28. Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin, 6, 80-83.