ارائه مدلی جهت ارزیابی شاخصهای چابکی پالایشگاه گاز فجر جم با رویکرد مدلسازی ساختاری تفسیری
محورهای موضوعی :
مدیریت صنعتی
Abbas Shoul
1
,
Saeid Sadeghi
2
1 - Assistant Prof., Dep of Industrial Management, Faculty of Administrative Sciences and Economics, Vali-e-Asr University, , Iran
2 - Ph.D. Student, AllamehTabatabaei University
تاریخ دریافت : 1395/04/30
تاریخ پذیرش : 1396/07/25
تاریخ انتشار : 1396/10/03
کلید واژه:
چابکی سازمانی,
Organizational Agility,
Interpretive Structural Modeling (ISM),
مدل سازی ساختاری تفسیری (ISM),
پالایشگاه گاز فجر جم,
Fajr Jam Gas Refinery,
چکیده مقاله :
در بازارهای رقابتی و به سرعت در حال تغییر امروزی، تولید چابک یکی از قوی ترین ابزارها به منظور پاسخ گویی به تقاضاهای مشتریان است. سازمانهای فعال در حوزه تولید در اثر میزان بالای رقابت، نیاز مشتریان مبنی بر شخصیسازی محصولات، فشار برای کاهش زمان تولید و سرعت بالای رشد فناوریهای نوظهور؛ با تغییرات محیطی بالایی روبهرو هستند. لازمه بقای این سازمانها در فضای پویا، استفاده از متدولوژی تولید و توسعه چابک جهت انطباق سریع تر فرآیندها و فعالیتهای کسبوکار با محیط هست. در شرایط متغیر کنونی همگان دریافته اند تنها مزیت رقابتی سازمان ها در آینده این است که مدیران آن ها بیاموزند چگونه باید زودتر از رقبایشان یاد بگیرند و این همان مفهوم چابکی است. بسیاری از خبرگان چنین ادعا میکنند که موفق ترین سازمان-های آینده، آن هایی هستند که چابک ترند. هدف اصلی پژوهش حاضر، ارائه مدلی به منظور شناسایی عوامل دخیل در چابکی پالایشگاه گاز فجر جم است. داده ها از مدیران و خبرگان پالایشگاه گاز فجر جم جمع آوری گردید. به منظور تحلیل داده ها از رویکرد مدل سازی ساختاری تفسیری (ISM) استفاده و روابط میان معیارها مشخص شد. سپس با استفاده از تحلیل MICMAC میزان نفوذ و وابستگی هر یک از معیارها به دست آمد. نتایج حاصل از تحلیل داده ها نشان داد که معیار کارکنان توانمند و چند مهارته با بیشترین قدرت نفوذ، عنوان تأثیرگذارترین معیار را به خود اختصاص داد. در پایان نیز برخی پیشنهادها و استراتژی های کاربردی برای مدیران فراهم شده است.
چکیده انگلیسی:
In today’s competitive and fast-moving marketplace, agile manufacturing is one of the strongest tools to respond to customer demands. Companies face the high environmental change due to the high level of competition for personalized products, reducing production time and high speed of emerging technologies. These organizations need to increase their agility in order to adapt business processes with rapid changes and survive in the competitive environment. In the current changeable situation, everyone found that the only competitive advantage of organizations in the future is that managers learn how to learn faster than their competitors and this is meaning of agility concept. Most of the experts state that the most successful organizations in the future will be those who are agiler. The main aim of this research is to present a model to identify contributing factors in agility of Fajr Jam gas refinery. The data were collected from managers and experts of Fajr Jam gas refinery. In order to analyze data Interpretive Structural Modeling (ISM) was used, and relations between criteria were identified. Then using MICMAC analysis the amount of influence and dependence of each criterion was obtained. The result of analyzing data indicate that “empowered and multi-skilled workers” criterion with the greatest leverage, ranked as the most influential criteria. Finally, some practical offers and strategies for managers are provided.
منابع و مأخذ:
Appelbaum, S. H., Calla, R., Calla, R., Desautels, D., Desautels, D, & Hasan, L. (2017). The challenges of organizational agility (part 1). Industrial and Commercial Training, 49(1), 6-14.
Arteta, B. M., & Giachetti, R. E. (2004). A measure of agility as the complexity of the enterprise system. Robotics and Computer-Integrated Manufacturing, 20(6), 495-503.
Ashrafi, N., Xu, P., Sathasivam, M., Kuilboer, J. P., Koelher, W., Heimann, D., & Waage, F. (2005). A framework for implementing business agility through knowledge management systems. In Seventh IEEE International Conference on E-Commerce Technology Workshops.IEEE. 116-121.
Carlson, J. G., & Yao, A. C. (2008). Simulating an agile, synchronized manufacturing system. International Journal of production economics, 112(2), 714-722.
Eltawy, N., & Gallear, D. (2017). Leanness and agility: a comparative theoretical view. Industrial Management & Data Systems, 117(1), 149-465.
Farsijani, H (2014). explaining and identifying the elements of effecting corporational speed at universities. Business Banagement Outlook, 14, 13-27.
Gunasekaran, A. (1998). Agile manufacturing: Enablers and an implementation framework, International Journal of Oprational Resaerch, 36(5), 1223-1247.
Hormozi, A. M. (2001). Agile manufacturing: the next logical step. Benchmarking: An International Journal, 8(2), 132-143.
Iranzadeh, S., Mesbahi, N., Shokri A., Ebrahimi, R. (2016). A study of the relation between organizational agility dimensions and the productivity of Dana insurance company employees in East Azarbaijan province. Quarterly Journal of Productivity Management, 10(38), 117-146
Ismail, H. S., & Sharifi, H. (2006). A balanced approach to building agile supply chains. International Journal of Physical Distribution & Logistics Management, 36(6), 431-444.
Jackson, M., & Johansson, C. (2003). An agility analysis from a production system perspective. Integrated Manufacturing Systems, 14(6), 482-488.
Khoshsima, G. (2003). Presenting a model in order to measurment agility of product organizations in Iranian elechtronic industry using fuzzy logic. MA thesis, faculty of management, university of Tehran.
Maskell, B. (2001). The age of agile manufacturing. Supply Chain Management: An International Journal, 6(1), 5-11.
Onuh, S., Bennett, N., & Hughes, V. (2006). Reverse engineering and rapid tooling as enablers of agile manufacturing. International Journal of Agile Systems and Management, 1(1), 60-72.
Ramasesh, R., Kulkarni, S., & Jayakumar, M. (2001). Agility in manufacturing systems: an exploratory modeling framework and simulation. Integrated Manufacturing Systems, 12(7), 534-548.
Sharifi, H., & Zhang, Z. (1999). A methodology for achieving agility in manufacturing organisations: An introduction. International journal of production economics, 62(1), 7-22.
Sharifi, H., & Zhang, Z. (2001). Agile manufacturing in practice-Application of a methodology. International Journal of Operations & Production Management, 21(5/6), 772-794.
Sherehiy, B., & Karwowski, W. (2014). The relationship between work organization and workforce agility in small manufacturing enterprises. International Journal of Industrial Ergonomics, 44(3), 466-473.
Yusuf, Y. Y., Gunasekaran, A., Adeleye, E. O., & Sivayoganathan, K. (2004). Agile supply chain capabilities: Determinants of competitive objectives. European Journal of Operational Research, 159(2), 379-392.
_||_
Appelbaum, S. H., Calla, R., Calla, R., Desautels, D., Desautels, D, & Hasan, L. (2017). The challenges of organizational agility (part 1). Industrial and Commercial Training, 49(1), 6-14.
Arteta, B. M., & Giachetti, R. E. (2004). A measure of agility as the complexity of the enterprise system. Robotics and Computer-Integrated Manufacturing, 20(6), 495-503.
Ashrafi, N., Xu, P., Sathasivam, M., Kuilboer, J. P., Koelher, W., Heimann, D., & Waage, F. (2005). A framework for implementing business agility through knowledge management systems. In Seventh IEEE International Conference on E-Commerce Technology Workshops.IEEE. 116-121.
Carlson, J. G., & Yao, A. C. (2008). Simulating an agile, synchronized manufacturing system. International Journal of production economics, 112(2), 714-722.
Eltawy, N., & Gallear, D. (2017). Leanness and agility: a comparative theoretical view. Industrial Management & Data Systems, 117(1), 149-465.
Farsijani, H (2014). explaining and identifying the elements of effecting corporational speed at universities. Business Banagement Outlook, 14, 13-27.
Gunasekaran, A. (1998). Agile manufacturing: Enablers and an implementation framework, International Journal of Oprational Resaerch, 36(5), 1223-1247.
Hormozi, A. M. (2001). Agile manufacturing: the next logical step. Benchmarking: An International Journal, 8(2), 132-143.
Iranzadeh, S., Mesbahi, N., Shokri A., Ebrahimi, R. (2016). A study of the relation between organizational agility dimensions and the productivity of Dana insurance company employees in East Azarbaijan province. Quarterly Journal of Productivity Management, 10(38), 117-146
Ismail, H. S., & Sharifi, H. (2006). A balanced approach to building agile supply chains. International Journal of Physical Distribution & Logistics Management, 36(6), 431-444.
Jackson, M., & Johansson, C. (2003). An agility analysis from a production system perspective. Integrated Manufacturing Systems, 14(6), 482-488.
Khoshsima, G. (2003). Presenting a model in order to measurment agility of product organizations in Iranian elechtronic industry using fuzzy logic. MA thesis, faculty of management, university of Tehran.
Maskell, B. (2001). The age of agile manufacturing. Supply Chain Management: An International Journal, 6(1), 5-11.
Onuh, S., Bennett, N., & Hughes, V. (2006). Reverse engineering and rapid tooling as enablers of agile manufacturing. International Journal of Agile Systems and Management, 1(1), 60-72.
Ramasesh, R., Kulkarni, S., & Jayakumar, M. (2001). Agility in manufacturing systems: an exploratory modeling framework and simulation. Integrated Manufacturing Systems, 12(7), 534-548.
Sharifi, H., & Zhang, Z. (1999). A methodology for achieving agility in manufacturing organisations: An introduction. International journal of production economics, 62(1), 7-22.
Sharifi, H., & Zhang, Z. (2001). Agile manufacturing in practice-Application of a methodology. International Journal of Operations & Production Management, 21(5/6), 772-794.
Sherehiy, B., & Karwowski, W. (2014). The relationship between work organization and workforce agility in small manufacturing enterprises. International Journal of Industrial Ergonomics, 44(3), 466-473.
Yusuf, Y. Y., Gunasekaran, A., Adeleye, E. O., & Sivayoganathan, K. (2004). Agile supply chain capabilities: Determinants of competitive objectives. European Journal of Operational Research, 159(2), 379-392.