بررسی تجربی تأثیر نانو ذرات سیلیکا بر خواص حرارتی و تریبولوژیکی روان کارهای صنعتی
محورهای موضوعی : یافته های نوین کاربردی و محاسباتی در سیستم های مکانیکی
1 - عضو هیات علمی
2 - گروه مکانیک، واحد دزفول، دانشگاه آزاد اسلامی، دزفول، ایران.
کلید واژه: سایش, ضریب هدایت حرارتی, روانکاری, نانو ذرات دیاکسید سیلیسیم,
چکیده مقاله :
روانکاری یکی از راههای خیلی مؤثر در کاهش اصطکاک و کم کردن گرمای اضافی تولیدشده در یک سامانه مکانیکی است. شناسایی افزودنی مناسب برای بهبود خواص روانکاری توسط افزودنی هایی که دارای ویژگی هایی نظیر قابلیت دسترسی و کارایی با کیفیت بالاتری هستند امری مهم است. هدف این پژوهش بررسی تأثیر نانو ذرات دیاکسید سیلیسیم (SiO2) با غلظت های مختلف به عنوان افزودنی بر خواص حرارتی و ضد سایشی روانکار بود. بدین منظور نانو ذرات با غلظتهای 0.2 و 0.4 و 0.5 درصد وزنی با روغن ترکیب شد. برای پراکنده کردن نانو ذرات درون سیال پایه و دستیابی به یک نانو سیال پایدار از سورفکتانت Span 80، حمام آلتراسونیک و همزن دور بالا استفاده شد. پایداری استاتیک نانو سیالات ساختهشده نیز بهصورت دیداری مورد بررسی قرار گرفت. نتایج بهدستآمده نشان داد که افزودن نانو ذرات به روغن هیچ گونه تغییر حالتی در آن ایجاد نمی کند و با گذشت زمان هیچ گونه رسوب و تغییر فازی مشاهده نشد که بیانگر پایداری بسیار خوب این نانو سیال میباشد. در مرحله آخر آزمون های سایش، تعیین ضریب اصطکاک و ضریب هدایت حرارتی بر روی نمونه ها انجام شد. با توجه به نتایج حاصل کمترین میزان سایش دیسک ها مربوط به مخلوط روان کار با غلظت 0.5 درصد وزنی بود. میزان کاهش وزن دیسک ها در اثر سایش برای این مخلوط %60.76، کاهش ضریب اصطکاک %15.07 و افزایش ضریب هدایت حرارتی %2.4 در مقایسه با روغن پایه بود.
Lubrication is one of the most effective ways to reduce friction and reduce the excess heat generated in a mechanical system. Identifying the right additive to improve lubrication properties by additives that have features such as accessibility and higher quality performance is important. The aim of this study was to investigate the effect of silicon dioxide (SiO2) nanoparticles with different concentrations as additives on the thermal and anti-wear properties of lubricants. For this purpose, nanoparticles with concentrations of 0.2, 0.4 and 0.5 wt% were combined with oil. Span 80 surfactant, ultrasonic bath and high speed agitator were used to disperse the nanoparticles into the base fluid and achieve a stable nanofluid. The static stability of nanofluids was also visually investigated. The obtained results showed that the addition of nanoparticles to the oil does not cause any change in its state and over time no sedimentation and phase change was observed, which indicates the very good stability of this nanofluid. In the last stage, wear tests, determination of friction coefficient and thermal conductivity coefficient were performed on the samples. According to the results, the lowest amount of disc wear was related to the lubricating mixture with a concentration of 0.5% by weight. The weight loss of the discs due to wear for this mixture was 60.76%, the reduction of the coefficient of friction was 15.07% and the increase of the thermal conductivity was 2.4% compared to the base oil.
1- اتفاقی، ا.،. احمدی، ح.، رشیدی، ع.، محتسبی، س.، سلطانی، ر.، (1390)، بررسی تأثیر نانو ذرات روی خواص روغنموتور و میزان عملکرد آن در کاهش سایش، فصلنامه علمی پژوهشی تحقیقات موتور، سال 7 شماره 24، ص 12-3.
2- فرزین نژاد، ن.، حسنی راد، ج.، (1393)، مروری بر کاربرد فناوری نانو در روان کارها، پژوهشگاه صنعت نفت تهران، فصلنامه تخصصی علمی ترویج، دوره9 شماره 48، ص35-18.
3. Zhanga, X., Lia, Ch., Y. Zhanga, Y., Wanga, Y., Lia, B., Yanga, M., Guoa, Sh., Liua, G., d Zhang. N., (2017), Lubricating property of MQL grinding of Al2O3/SiC mixed nanofluid with different particle sizes and microtopography analysis bycross correlation, Precision Engineering, 47, pp 532-545.
4- زارع دثاری، ب.، عباس زاده، م.، داودی، ب.، (1394)، بهبود روان کاری در فرآیند کشش عمیق با استفاده از افزودنی نانو ذرات، ماهنامه مهندسی مکانیک مدرس، سال 15 شماره ۱، ص 322-317.
5. Ahmed Ali, M.K., Xianjun, H., Mai, L., Qingping, C., Turkson, R.F., Bicheng. Ch., (2016), Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives, Tribology International, 103, pp 540-554.
6.Azman, N.F., Samion, S., Hakim Mat Sot, M.N., (2018), Investigation of tribological properties of CuO/palm oil nanolubricant using pin-on-disc tribotester, Green Materials 6(1), pp 30–37.
7. Parasa, L.P., Maldonado-Cortesa, D., V. Kharissovab, O., Saldivara, K.I., Contrerasa, L., Arquietab, P., Castañosa, B., (2019), Novel carbon nanotori additives for lubricants with superior anti-wear and extreme pressure properties, Tribology International, 131, pp 488–495.
8. Rastogi, P.M., Kumar, R., Kumar, N., (2020), Effect of SiO2 nanoparticles on the tribological characteristics of jatropha oil, Materials Today: Proceedings, Available online, https://doi.org/10.1016/j.matpr.
9. Aldana, P.U., Dassenoy, F., Vacher, B., Le Mogne, Th., Thiebaut, B., (2016), WS2 nanoparticles anti-wear and friction reducing properties on rough surfaces in the presence of ZDDP additive, Tribology International, 102, pp 213-221.
10. Technicall Data Sheet British Petroleum (BP) - BP Transcal N – High Quality Heat Transfer Oil.
11. Nanomaterils Pioneers Company, Third unit. No51.Sadaf No.5.Vakil Abad Blv. Mashhad City, Khorasan Province, Iran.
12- تقی پور، ع.، (1398)، بررسی تجربی عملکرد ضد سایشی نانو روان کارها در گیربکس ماشینآلات دوار، دوماهنامه علمی پژوهشی مجله مهندسی ساخت و تولید ایران، دوره 6 شماره 2، ص 38-30.
13. Akinci, A., Sen, S., Sen, U., (2014), Friction and wear behavior of zirconium oxide reinforced PMMA Composites, Composites Part B: Engineering, 56, pp 42-47.
14. Lee, G.J., Park, J.J., Lee, M.K., Rhee, Ch.K., (2017), Stable dispersion of nanodia., monds in oil and their tribological properties as lubricant additives, Applied Surface Science, 415, pp 24-27.
15. Kaviyarasu, T., Vasanthan, B., (2015), Improvement of tribological and thermal properties of engine lubricant by using nano-materials, Journal of Chemical and Pharmaceutical Sciences, 7, pp 208-211.
_||_