مطالعه مروری برای بهبود عملکرد انتقال حرارت دریافت کننده مرکزی در نیروگاه برج خورشیدی
محورهای موضوعی : یافته های نوین کاربردی و محاسباتی در سیستم های مکانیکیهادی فرجادمهر 1 , نوید بزرگان 2 , علیرضا دنه دزفولی 3
1 - گروه مهندسی مکانیک، موسسه آموزش عالی اروندان خرمشهر، خرمشهر، ایران
2 - گروه مهندسی مکانیک، دانشگاه آزاد اسلامی واحد آبادان
3 - گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه شهید چمران اهواز، اهواز، ایران
کلید واژه: انتقال حرارت, دریافت کننده حفرهای, نیروگاه برج خورشیدی, لولههای دریافت کننده,
چکیده مقاله :
تاکنون تحقیقات متعددی در زمینه بهبود عملکرد دریافت کننده های نیروگاه برج خورشیدی صورت گرفته است. بیشتر این مطالعات، در زمینه تغییر چیدمان آیینه های هلیوستات، انتخاب انواع مختلف سیال به عنوان حامل انرژی گرمایی و تغییر ساختار دریافت کننده می باشد، درحالی که در زمینه تغییر میدان جریان در لوله های دریافت کننده، تحقیقات محدودی صورت گرفته است. در این تحقیق، به بررسی پژوهش های انجام شده جهت شناسایی انواع روش های موثر برای کاهش گرادیان شار حرارتی متغیر و توزیع دمای غیر یکنواخت با استفاده از المان هایی از قبیل بافل ها، کویل ها و نوارهای پیچ خورده درون لوله های دریافت کننده حفره ای برج خورشیدی برای تغییر میدان جریان پرداخته شده است. این المان ها با تغییر رژیم جریان از حالت آرام به جریان آشفته باعث اختلاط بهتر جریان، وکاهش ضخامت لایه مرزی شده که افزایش نرخ انتقال حرارت جابجایی درون لوله دریافت کننده خورشیدی را بهبود می بخشند.
مبدلهای حرارتی که بهطور گسترده در حوزههای زیادی از قبیل صنابع نفت و گاز، صنایع شیمیایی، تبرید، تهویه مطبوع، برج های خورشیدی، انرژی زمین گرمایی و ... استفاده میشود، تجهیراتی مهم و حیاطی جهت انتقال حرارت به شمار میروند. مهمترین پارامترها جهت طراحی وبکارگیری مبدل حرارتی کاهش اندازه و هزینهی آن، ضریب انتقال حرارت و افت فشار یا مقاومت در برابر جریان میباشد. اغلب افزایش ضریب انتقال حرارت، افزایش ضریب اصطکاک جریان و متعاقب آن افزایش افت فشار یا مقاومت در برابر جریان را در پی دارد که این امر باعث کاهش بازدهی سیستم می گردد .اساسی ترین چالش اصلی در طراحی مبدلهای حرارتی کمینه کردن مقاومت در برابر جریان در حین افزایش ضریب انتقال می باشد. بنابراین، ایجاد یک نظریه و روش برای تقویت انتقال حرارت در جریان لوله برای بالا بردن عملکرد مبدل حرارتی ضروری است. اصول تقویت انتقال حرارت در جریان مرکزی لوله برای بهبود یکنواختی دما و کاهش مقاومت در برابر جریان که با تقویت انتقال حرارت در جریان مرزی درون لوله متفاوت است. بدین منظور ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ اﺛﺮ دوﮔﺎﻧﻪ میدان ﺑﺮ رﻓﺘﺎر ﺗﺮﻣﻮﻫﯿﺪروﻟﯿﮑﯽ ﺳﯿﺴﺘﻢ، از ﻣﻔﻬﻮم کارایی ﮐﻪ در ﺑﺮ دارﻧﺪه ﻫﻤﺰﻣﺎن اﺛﺮ ﺿﺮﯾﺐ اﻧﺘﻘﺎل ﺣﺮارت و ﺿﺮﯾﺐ اﺻﻄﮑﺎک جریان اﺳﺖ، جهت انتخاب مبدل های حرارتی کاربرد دارد .
[1] Kalogirou, S., (2009), Solar energy engineering: process and systems, British library.
[2] Chen, G.Q., (2011), Nonrenewable energy cost and green house gas emission of a 1.5MW solar power tower plant in china, Renewable and sustainable energy, Vol 15, pp 1961-1967.
[3] Alexopoulos, S., Hoffschmid, B., (2010), Solar tower power plant in Germany and future perspectives of the development of the technology in Greece and Cyprus, Renewable Energy, pp 1352–1356.
[4] Wagner, M., (2008), Simulation and predictive performance modeling of utility-scale cemtral receiver system power plants, Master thesis, University of Wisconsin-Madison.
[5] Bejan, A.D., (2003), Heat Tranfer Handbook, John Wiley, New Jersey.
[6] Giampietro, F., (1998), Heat transfer optimization in internally finned tubes under laminar flow conditions, International Journal of Heat and Mass Transfer, Vol. 41 pp 1243-1253.
[7] Siddique, M., Alhazmy, M., (2008), Experimental study of turbulent single-phase flow and heat transfer inside a micro-finned tube, International Journal of Refrigeration, Vol. 31, pp 234-241.
[8] Manglik, R.M., Bergles, A.E., (1993), Heat transfer and pressure drop correlations for twisted tape inserts in isothermal tubes, ASME Journal Heat Transfer, Vol. 115, pp 890-896.
[9] Eiamsa-ard, S., Promvonge, P., (2007), Heat transfer characteristics in a tube fitted with helical screw-tape with without core-rod inserts, International Communications in Heat and Mass Transfer, Vol. 34, pp176-185.
[10] Yang K., Liu W., (2007), Forming an equivalent thermal boundary layer for fully developed laminar tube flow and its field synergy analysis, Journal of Engineering Thermophysics, Vol. 28, pp 283-285.
[11] Salomé, A., Chhel F., Flamant, G., Ferrière, A., Thiery, F., (2013), Control of the flux distribution on a solar tower receiver using an optimized aiming point strategy: Application to THEMIS solar tower, Solar Energy, Vol. 94, pp 352–366.
[12] Besarati, S.M., Yogi Goswami, D., Stefanakos, E.K., (2014), Optimal heliostat aiming strategy for uniform distribution of heat flux on the receiver of a solar power tower plant, Energy Conversion Management, Vol. 84, pp 234–243.
[13] Ashley, T., Carrizosa, E., Fernández-Cara, E., (2017), Optimisation of aiming strategies in Solar power tower plants, Energy, Vol. 137, pp 285–291.
[14] Collado, F.J., (2010), One-point fitting of the flux density produced by a heliostat, Solar Energy, Vol. 84, pp 673–684.
[15] Wang, K., He, Y. L., Qiu, Y., Zhang, Y., (2016), A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver, Renewable Energy, Vol. 89, pp 93–107.
[16] Pacio, J., Wetzel, T., (2013), Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems, Solar Energy, Vol. 93, pp 11–22.
[17] Marocco, L., Cammi, G., Flesch, J., Wetzel, T., (2016), Numerical analysis of a solar tower receiver tube operated with liquid metals, International Journal Thermal Science, Vol. 105, pp 22–35.
[18] Xu, C., Song, Z., Chen, L. D., Zhen, Y., (2011), Numerical investigation on porous media heat transfer in a solar tower receiver, Renewable Energy, Vol. 36, pp 1138–1144.
[19] Zou, C., Zhang, Y., Falcoz, Q., Neveu, P., Zhang, C., Shu, W., Huang S., (2017), Design and optimization of a high-temperature cavity receiver for a solar energy cascade utilization system, Renewable Energy, Vol. 103, pp 478–489.
[20] Yang, L., Zhou, R., Jin, X., Ling, X., Peng, H., (2016), Experimental investigate on thermal properties of a novel high temperature flat heat pipe receiver in solar power tower plant, Applied Thermal Engineering, Vol. 109, pp 610–618.
[21] Kanatani, K., Yamamoto, T., Tamaura, Y., Kikura, H., (2017), A model of a solar cavity receiver with coiled tubes, Solar Energy, Vol. 153, pp 249–261.
[22] Liu, Y., Chen, Q., Hu, K., Hao, J.H., (2016), Flow field optimization for the solar parabolic trough receivers in direct steam generation systems by the variational principle, International Journal Heat Mass Transfer, Vol. 102, pp 1073–1081.
[23] Mwesigye, A., Bello-Ochende, T., Meyer, J.P., (2014), Heat transfer and thermodynamic performance of a parabolic trough receiver with centrally placed perforated plate inserts, Applied Energy, Vol. 136, pp 989–1003.
[24] Collado, F.J., (2010), One-point fitting of the flux density produced by a heliostat, Solar Energy, Vol. 84, pp 673-684.
[25] Boerema, N., Morrison, G., Taylor, R., Rosengarten, G., (2013), High temperature solarthermal central-receiver billboard design, Solar Energy, Vol. 97, pp 356–368.
[26] Dutta, P., (2017), High temperature solar receiver and thermal storage systems, Applied Thermal Engineering, Vol. 124, pp 624–632.
[27] Liu, W., Yang, K., (2008), Mechanism and numerical analysis of heat transfer enhancement in the core flow along a tube, Science China Technological Sciences, Vol. 51, 1195-1202.
[28] Saha, S.K., Gaitonde, U.N., Date, A.W., (1989), Heat transfer and pressure drop characteristics of laminar flow in a circular tube fitted with regularly spaced twistedtape elements, Experimental Thermal Fluid Science, Vol. 2 (1989) 310-322.
[29] Date, A.W., Gaitonde, U.N., (1990), Development of correlations for predicting characteristics of laminar flow in a tube fitted with regularly spaced twisted-tape elements, Experimental Thermal Fluid Science, Vol. 3, pp 373-382.
[30] Chang, S.W., Yang, T.L., Liou, J.S., (2007), Heat transfer and pressure drop in tube with broken twisted tape insert, Experimental Thermal Fluid Science, Vol. 32, pp 489-501.
[31] Naphon, P., (2006), Heat transfer and pressure drop in the horizontal double pipes with and without twisted tape insert, International Communications in Heat and Mass Transfer, Vol. 33, pp166-175.
[32] Eiamsa-ard, S., Wongcharee, K., Eiamsa-ard, P., Thianpong, C., (2010), Heat transfer enhancement in a tube using delta-winglet twisted tape inserts, Applied Thermal Engineering, Vol. 30, pp 310-318.
[33] Seemawute, P., Eiamsa-ard, S., (2010), Thermohydraulics of turbulent flow through a round tube by a peripherally-cut twisted tape with an alternate axis, International Communications in Heat and Mass Transfer, Vol. 37, pp 652-659.
[34] Eiamsa-ard, S., Wongcharee, K., Sripattanapipat, S., (2009), 3-D numerical simulation of swirling flow and convective heat transfer in a circular tube induced by means of loose-fit twisted tapes, International Communications in Heat and Mass Transfer, Vol. 36, pp 947-955.
[35] Guo, J., Fan, A., Zhang, X., Liu, W., (2011), A numerical study on heat transfer and friction factor characteristics of laminar flow in a circular tube fitted with center-cleared twisted tape, International Journal Thermal Science, Vol. 50, pp 1263-1270.
[36] Ray, S., Date, A.W., (2001), Laminar flow and heat transfer through square duct with twisted tape insert, International Journal Heat Fluid Flow, Vol. 22, pp 460-472.
[37] Ray, S., Date, A.W., (2003), Friction and heat transfer characteristics of flow through square duct with twisted tape insert, International Journal Heat Mass Transfer, Vol. 46, pp 889-902.
[38] Zimparov, V., (2001), Enhancement of heat transfer by a combination of three-start spirally corrugated tubes with a twisted tape, International Journal Heat Mass Transfer, Vol. 44, pp 551-574
[39] Zimparov, V., (2002), Enhancement of heat transfer by a combination of a single-start spirally corrugated tubes with a twisted tape, Experimental Thermal Fluid Science, Vol. 25, pp 535-546.
[40] Promvonge, P., Eiamsa-ard, S., (2007), Heat transfer behaviors in a tube with combined conical-ring and twisted-tape insert, International Communications in Heat and Mass Transfer, Vol. 34, pp 849-859.
[41] Liao, Q., Xin, M.D., (2000), Augmentation of convective heat transfer inside tubes with three-dimensional internal extended surfaces and twisted-tape inserts, Chemical Engineering Journal, Vol. 78, pp 95-105.
[42] Guo, Z.Y., Li, D.Y., Wang, B.X., (1998), A novel concept for convective heat transfer enhancement, International Journal Heat Mass Transfer, Vol. 41, pp 2221-2225.
[43] Guo, Z.Y., Tao, W.Q., Shah, R.K., (2005), The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer, International Journal Heat Mass Transfer, Vol. 48, pp 1797-1807.
[44] Liu, W., Liu, Z.C., Guo, Z.Y., (2009), Physical quantity synergy in laminar flow field of convective heat transfer and analysis of heat transfer enhancement, Chinese Bulletin Science, Vol. 54, pp 3579-3586.
[45] Liu, W., Liu, Z.C., Ming, T.Z., Guo, Z.Y., (2009), Physical quantity synergy in laminar flow field and its application in heat transfer enhancement, International Journal Heat Mass Transfer, Vol. 52, pp 4669-4672.
[46] Guo, Z.Y., Zhu, H.Y., Liang, X.G., (2007), Entransy e a physical quantity describing heat transfer ability, International Journal Heat Mass Transfer, Vol. 50, pp 2545-2556.
[47] Guo, Z.Y., (2008), New physical quantities in heat, Journal Engineering Thermophys, Vol. 29, pp 112-114.
[48] Meng, J.A., Liang, X.G., Li, Z.X., (2005), Field synergy optimization and enhanced heat transfer by multi-longitudinal vortexes flow in tube, International Journal Heat Mass Transfer, Vol. 48, pp 3331-3337
[49] Saha, S.K., Dutta, A., Dhal, S.K., (2001), Friction and heat transfer characteristics of laminar swirl flow through a circular tube fitted with regularly spaced twisted tape elements, International Journal Heat Mass Transfer, Vol. 44, pp 4211-4223.
[50] Jaisankar, S., Radhakrishnan, T.K., Sheeba, K.N., (2009), Experimental studies on heat transfer and friction factor characteristics of thermosyphon solar water heater system fitted with spacer at the trailing edge of twisted tapes, Journal Applied Thermal Engineering, Vol. 29, pp1224-1231.
[51] Ayub, Z.H., Al-Fahed, S.F., (1993), The effect of gap width between horizontal tube and twisted tape on the pressure drop in turbulent water flow, International Journal Heat Fluid Flow, Vol. 14, pp 64-67.
[52] Chang, S.W., Jan, Y.J., Liou, J.S., (2007), Turbulent heat transfer and pressure drop in tube fitted with serrated twisted tape, International Journal Thermal Science, Vol. 46, pp 506-518.
_||_