خواص، روشهای سنتز و کاربردهای کورکومین بهعنوان منبع طبیعی سلامت
محورهای موضوعی : تحقیقات در علوم مهندسی سطح و نانو موادسعیده ابراهیمی اصل 1 , رضا جوانمردی 2 , عاطفه بدر 3
1 - استادیار گروه شیمی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد اهر، اهر، ایران
2 - دانشجوی کارشناسی ارشد، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد اهر، اهر، ایران
3 - دانشجوی دکتری، دانشکده مهندسی مواد، دانشگاه صنعتی سهند، ایران
کلید واژه: آلزایمر, زردچوبه, نانوکپسوله, نانو کورکومین, بیولوژیکی, حامل دارویی,
چکیده مقاله :
کورکومین به عنوان مهمترین و فعالترین جزء زردچوبه از داروهای گیاهی است که به جهت تأثیر چشمگیر و گسترده در درمان انواع بیماریهایی که بشر با آنها روبه رواست مانند آلزایمر، سرطان، افسردگی، آرتریت و غیره میتواند موردمطالعه و تحقیق مجدد قرار گیرد. ازاینرو، محققان تلاش کردهاند تا با اصلاح سطح، فعالیت بیولوژیکی و دارویی کورکومین را افزایش داده و با سیستمهای تحویل کارآمد، بهویژه نانو کپسولهسازی، بر معایب آن غلبه کنند. تلاشهای تحقیقاتی تاکنون پتانسیل رضایتبخشی از فرمولهای نانو رنگ و نانو داروی کورکومین را نشان داده است که تمام مزایای بیولوژیکی و دارویی کورکومین را افزایش میدهد. نانو پزشکی شاخهای است که به کاربردهای نانوتکنولوژی در درمان میپردازد. برای سنتز نانو کورکومین، مجموعهای از تکنیکها توسعهیافته است و هر تکنیک دارای مزایا و ویژگیهای منحصربهفردی است. روش تخریب فتوشیمیایی کورکومین یکی از موانع برای هدف دارورسانی مؤثر است که باتوجهبه تغییرات مختلف مولکول کورکومین، از جمله، تهیه کمپلکسهای فلزی، مشتقات فعال بیولوژیکی بیشتری از این ترکیب را میتوان به دست آورد. اکسیدهای فلزی آسیب نسبتاً کمتری برای سیستمهای بیولوژیکی دارند و بهعنوان حامل دارویی برای کورکومین استفاده میشوند که شامل TiO2، CuO، ZnO، Fe3O4 و CeO2 است.
[1] H. Khan and R. T. Yaseen, Chemistry of turmeric: a golden spice with the multifunctional benefits, plan cell, Biotechnol. Mol. Biol.(2020) 94–100.
[2] M. A. A. Ibrahim et al., In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors, Comput. Biol. Med. 126 (2020) 104046
[3] S. Wanninger, V. Lorenz, A. Subhan, and F. T. Edelmann, Metal complexes of curcumin--synthetic strategies, structures and medicinal applications, Chem. Soc. Rev. 44 (15) (2015) 4986–5002.
[4] E. El Nebrisi, Neuroprotective activities of curcumin in Parkinson’s disease: A review of the literature, Int. J. Mol. Sci. 22 (20) (2011) 11248.
[5] S. S. Hettiarachchi, S. P. Dunuweera, A. N. Dunuweera, and R. M. G. Rajapakse, Synthesis of curcumin nanoparticles from raw turmeric rhizome, ACS omega. 6 (12) (2021) 8246–8252.
[6] B. Y. Kang, Y. J. Song, K.-M. Kim, Y. K. Choe, S. Y. Hwang, and T. S. Kim, “Curcumin inhibits Th1 cytokine profile in CD4+ T cells by suppressing interleukin-12 production in macrophages, Br. J. Pharmacol. 128 (2) (1999) 380–384.
[7] S. K. Sandur et al., Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism, Carcinogenesis. 28 (8) (2007) 1765–1773.
[8] H. Chopra et al., Curcumin nanoparticles as promising therapeutic agents for drug targets, Molecules. 26 (16) (2021) 4998.
[9] A. Karthikeyan, N. Senthil, and T. Min, Nanocurcumin: a promising candidate for therapeutic applications, Front. Pharmacol. 11 (2020) 487.
[10] A. Shamsi-Goushki et al., Comparative effects of curcumin versus nano-curcumin on insulin resistance, serum levels of apelin and lipid profile in type 2 diabetic rats, Diabetes, Metab. Syndr. Obes. Targets Ther. 13 (2020) 2337.
[11] M. Li, M. O. Ngadi, and Y. Ma, Optimisation of pulsed ultrasonic and microwave-assisted extraction for curcuminoids by response surface methodology and kinetic study, Food Chem. 165 (2014) 29–34.
[12] G. Najafpour, Formic acid and microwave assisted extraction of curcumin from turmeric (Curcuma longa L.), Int. J. Eng. 29 (2) (2016) 145–151.
[13] F. Chemat, N. Rombaut, A.-G. Sicaire, A. Meullemiestre, A.-S. Fabiano-Tixier, and M. Abert-Vian, Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review, Ultrason. Sonochem. 34 (2017) 540–560.
[14] T. Jiang, R. Ghosh, and C. Charcosset, Extraction, purification and applications of curcumin from plant materials-A comprehensive review, Trends Food Sci. \& Technol. 112 (2021) 419–430.
[15] B. Roman, M. Retajczyk, Ł. Sałaciński, and R. Pełech, Curcumin - Properties, Applications and Modification of Structure, Mini. Rev. Org. Chem. 17 (5) (2020) 486–495.
[16] S.-J. Wu, K.-W. Tam, Y.-H. Tsai, C.-C. Chang, and J. C.-J. Chao, Curcumin and saikosaponin a inhibit chemical-induced liver inflammation and fibrosis in rats, Am. J. Chin. Med. 38 (01) (2010) 99–111.
[17] M. S. Abesekara and Y. Chau, Recent advances in surface modification of micro-and nano-scale biomaterials with biological membranes and biomolecules, Front. Bioeng. Biotechnol. 10(2022).
[18] A. H. Abouzeid, Surface-modified micellar formulations of curcumin co-loaded with chemotherapeutic agents for enhanced anti-cancer effect, Northeastern University, 2013.
[19] Y. Zhong, T. Liu, W. Lai, Y. Tan, D. Tian, and Z. Guo, Heme oxygenase-1-mediated reactive oxygen species reduction is involved in the inhibitory effect of curcumin on lipopolysaccharide-induced monocyte chemoattractant protein-1 production in RAW264. 7 macrophages, Mol. Med. Rep. 7 (1) (2013) 242–246.
[20] A. M. Beyene, M. Moniruzzaman, A. Karthikeyan, and T. Min, Curcumin nanoformulations with metal oxide nanomaterials for biomedical applications, Nanomaterials. 11 (2) (2021) 1–25.
[21] M. R. Peram et al., Factorial design based curcumin ethosomal nanocarriers for the skin cancer delivery: in vitro evaluation, J. Liposome Res. 29 (3) (2019) 291–311.
[22] Y.-J. Liang et al., Curcumin-loaded hydrophobic surface-modified hydroxyapatite as an antioxidant for sarcopenia prevention, Antioxidants. 10 (4) (2021) 616.
[23] M. M. Yallapu, P. K. B. Nagesh, M. Jaggi, and S. C. Chauhan, Therapeutic applications of curcumin nanoformulations, AAPS J. 17 (2015) 1341–1356.
[24] S. Bose, A. K. Panda, S. Mukherjee, and G. Sa, Curcumin and tumor immune-editing: resurrecting the immune system, Cell Div. 10 (1) (2015) 1–13.
[25] D. Chandra and S. S. Gupta, Anti-inflammatory and anti-arthritic activity of volatile oil of Curcuma longa (Haldi), Indian J. Med. Res. 60 (1) (1972) 138–142.
[26] S. Nagai, Flexible and expedited regulatory review processes for innovative medicines and regenerative medical products in the US, the EU, and Japan, Int. J. Mol. Sci. 20 (15) (2019) 3801.
[27] A. K. Singh, Y. Jiang, S. Gupta, M. Younus, and M. Ramzan, Anti-inflammatory potency of nano-formulated puerarin and curcumin in rats subjected to the lipopolysaccharide-induced inflammation, J. Med. Food, 16 (10) (2013) 899–911.
[28] B. B. Aggarwal, A. Kumar, A. C. Bharti, and others, Anticancer potential of curcumin: preclinical and clinical studies, Anticancer Res. 23(1/A) (2003) 363–398.
[29] R. B. Arora, V. Kapoor, N. Basu, and A. P. Jain, Anti-inflammatory studies on Curcuma longa (turmeric), Indian J. Med. Res. 59 (8) (1971) 1289–1295.
[30] C. Jobin et al., Christian, et al. "Curcumin blocks cytokine-mediated NF-κB activation and proinflammatory gene expression by inhibiting inhibitory factor I-κB kinase activity, J. Immunol. 163 (6) (1999) 3474–3483.
[31] C. Buhrmann et al., Curcumin modulates nuclear factor κB (nf-κB)-mediated inflammation in human tenocytes in vitro: role of the phosphatidylinositol 3-kinase/Akt pathway, J. Biol. Chem. 286 (32) (2011) 28556–28566.
[32] S.-E. Chuang, A.-L. Cheng, J.-K. Lin, and M.-L. Kuo, Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats, Food Chem. Toxicol. 38 (11) (2000) 991–995.
[33] Z. Meng, C. Yan, Q. Deng, D. Gao, and X. Niu, Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-κB pathways, Acta Pharmacol. Sin. 34 (7) (2013) 901–911.
[34] S. Biswas and I. Rahman, Modulation of steroid activity in chronic inflammation: a novel anti-inflammatory role for curcumin, Mol. Nutr& food Res. 52 (9) (2008) 987–994, 2008.
[35] J.-M. Yun, I. Jialal, and S. Devaraj, Epigenetic regulation of high glucose-induced proinflammatory cytokine production in monocytes by curcumin, J. Nutr. Biochem. 22 (5) (2011) 450–458.
[36] I. Villegas, S. Sánchez-Fidalgo, and C. A. de la Lastra, Chemopreventive effect of dietary curcumin on inflammation-induced colorectal carcinogenesis in mice, Mol. Nutr. \& food Res. 55 (2) (2011) 259–267.
[37] J. Hong et al., Modulation of arachidonic acid metabolism by curcumin and related β-diketone derivatives: effects on cytosolic phospholipase A 2, cyclooxygenases and 5-lipoxygenase, Carcinogenesis. 25 (9) (2004)1671–1679.
[38] A. Literat et al., Regulation of pro-inflammatory cytokine expression by curcumin in hyaline membrane disease (HMD), Life Sci. 70 (3) (2001) 253–267.
[39] Y. Abe, S. H. U. Hashimoto, and T. Horie, Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages, Pharmacol. Res. 39 (1) (1999) 41–47.
[40] Y. Gu et al., 4-methoxycarbonyl curcumin: a unique inhibitor of both inflammatory mediators and periodontal inflammation, Mediators Inflamm. 2013 (2013).
[41] J. Rennolds et al., Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium, Biochem. Biophys. Res. Commun., 417 (1) (2012) 256–261.
[42] X. Mei, D. Xu, S. Xu, Y. Zheng, and S. Xu, Novel role of Zn (II)--curcumin in enhancing cell proliferation and adjusting proinflammatory cytokine-mediated oxidative damage of ethanol-induced acute gastric ulcers, Chem. Biol. Interact. 197 (1) (2012)31–39.
[43] A. M. Gonzales and R. A. Orlando, Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes, Nutr. \& Metab. 5 (2008) 1–13.
[44] A. Grandjean-Laquerriere, S. C. Gangloff, R. Le Naour, C. Trentesaux, W. Hornebeck, and M. Guenounou, Relative contribution of NF-κB and AP-1 in the modulation by curcumin and pyrrolidine dithiocarbamate of the UVB-induced cytokine expression by keratinocytes, Cytokine, 18 (3) (2002)168–177.
[45] C. Kliem, A. Merling, M. Giaisi, R. Köhler, P. H. Krammer, and M. Li-Weber, Curcumin suppresses T cell activation by blocking Ca2+ mobilization and nuclear factor of activated T cells (NFAT) activation, J. Biol. Chem. 287 (13) (2012) 10200–10209.
[46] S.-C. Chueh, M.-K. Lai, I.-S. Liu, F.-C. Teng, and J. Chen, Curcumin enhances the immunosuppressive activity of cyclosporine in rat cardiac allografts and in mixed lymphocyte reactions, in Transplantation proceedings, 35 (4) (2003)1603–1605.
[47] B. Cheppudira et al., Curcumin: a novel therapeutic for burn pain and wound healing, Expert Opin. Investig. Drugs, 22 (10,) (2013) 1295–1303.
[48] K. Mashayekhi, H. Zare Marzouni, Curcumin (extracted from tumeric) and its therapeutic effects, Jorjani Biomed. J. 4, (2) (2016) 1–20.
[49] M. M. Yallapu et al., Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer, Biomaterials, 35 (30) (2014) 8635–8648.
[50] N. S. Rejinold et al., Anti-cancer, pharmacokinetics and tumor localization studies of pH-, RF-and thermo-responsive nanoparticles, Int. J. Biol. Macromol. 74 (2015) 249–262.
[51] A. Ghazi, Z. Delavarian, A. Pakfetrat, F. Homaee, Z. Delirsani, and M. Jafari, Effects of curcumin on the prevention and treatment of mucosal inflammation caused by radiation therapy in patients with head and neck cancer, Avicenna J. Phytomedicine. 5 (2015).
[52] L. Zhang, G. Tang, and Z. Wei, Prophylactic and therapeutic effects of curcumin on treatment-induced oral mucositis in patients with head and neck cancer: a meta-analysis of randomized controlled trials, Nutr. Cancer. 73 (5) (2021) 740–749.
[53] S. Hemati and A. Saeedi, Clinical Evaluation of Oral Curcumin in Prevention of Acute, J. Isfahan Med. Sch., 29 (152) (2011) 1216–1223.
[54] A. Ostadi, M. Arab-Zozani, E. Zarei, G. A. Ferns, and A. Bahrami, Therapeutic effect of turmeric on radiodermatitis: A systematic review, Physiol. Rep. 11 (5) (2023) e15624.
[55] N. Singh, M. Kumar, and R. K. Singh, Leishmaniasis: current status of available drugs and new potential drug targets, Asian Pac. J. Trop. Med. 5 (6) (2012) 485–497.
[56] R. TAHMASEBI, A. BARAZESH, and M. Fouladvand, Evaluation of in vitro antileishmanial activity of curcumin and its derivatives ‘gallium curcumin, indium curcumin and diacethyle curcumin, Eur. Rev. Med. Pharmacol. Sci. 17 (24) (2013) 3306–3308.
[57] S. Barthelemy, L. Vergnes, M. Moynier, D. Guyot, S. Labidalle, and E. Bahraoui, Curcumin and curcumin derivatives inhibit Tat-mediated transactivation of type 1 human immunodeficiency virus long terminal repeat, Res. Virol. 149 (1) (1998) 43–52.
[58] N. Chainani-Wu, Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa), J. Altern & Complement. Med. 9 (1) (2003) 161–168.
]59[ م. اکبری، ا. عسکریزاده، ک. صدری، فعالیت آنتیلیشمانیایی نانولیپوزومهای حاوی کورکومیـن بهصورت درونتـن و برونتـن، فصلنامه پوست و زیبایی. ۴ . صفحات ۲۱۷-۲۰۴ (1396).
[60] M. Fouladvand, S. Khorami, B. Naeimi, S. Fotouhi, and K. Mohammadi, Evaluation of Lethal Effect of Curcumin and its Derivatives Against Leishmania Major In Vitro, ISMJ, 23 (2) (2020) 153–164.
[61] M. Samadi, N. Kordi, S. Salehpoor, O. M. Iravani, and F. Asjodi, Effect of one and five-day curcumin consumption on muscle damage indices after an eccentric exercise session in untrained young men, J. Mil. Med. 21 (2) (2019) 123–130.
[62] D. N. Heo et al., Inhibition of osteoclast differentiation by gold nanoparticles functionalized with cyclodextrin curcumin complexes, ACS Nano, 8 (12) (2014) 12049–12062.
[63] H. Rachmawati, C. A. Edityaningrum, and R. Mauludin, Molecular inclusion complex of curcumin--β-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel, Aaps Pharmscitech, 14 (2013) 1303–1312.
[64] N. Suwannateep et al., Encapsulated curcumin results in prolonged curcumin activity in vitro and radical scavenging activity ex vivo on skin after UVB-irradiation, Eur. J. Pharm. Biopharm. 82 (3) (2012) 485–490.
[65] D. Akbik, M. Ghadiri, W. Chrzanowski, and R. Rohanizadeh, Curcumin as a wound healing agent, Life Sci. 116 (1) (2014) 1–7.
[66] R. K. Basniwal, H. S. Buttar, V. K. Jain, and N. Jain, Curcumin nanoparticles: preparation, characterization, and antimicrobial study, J. Agric. Food Chem. 59 (5) (2011) 2056–2061.
[67] N. Dogra et al., Polydiacetylene nanovesicles as carriers of natural phenylpropanoids for creating antimicrobial food-contact surfaces, J. Agric. Food Chem. 63 (9) (2015) 2557–2565.
[68] C. Gong et al., A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing, Biomaterials. 34 (27) (2013) 6377–6387.
[69] R. Mehrdad and B. Tourandokht, Antinociceptive effect of curcumin, an effective constituent of turmeric, in diabetic rats and evaluation of the involvement of lipid peroxidation, 2012.
[70] F. Re et al., Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model, Nanomedicine Nanotechnology, Biol. Med. 7 (5) (2011) 551–559.
[71] S. Doggui, J. K. Sahni, M. Arseneault, L. Dao, and C. Ramassamy, Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line, J. Alzheimer’s Dis. 30 (2) (2012) 377–392.
[72] S. D. Sadoughi and J. Khayatzadeh, Effect of Curcumin on Hippocampal Levels of Brain-Derived Neurotrophic Factor and Serum Levels of Inflammatory Cytokines in Rat Model for Alzheimer’s Disease, Neurosci. J. Shefaye Khatam. 6 (1) (2018) 1–9.
[73] S. Marrache and S. Dhar, Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics, Proc. Natl. Acad. Sci. 109 (40) (2012) 16288–16293.
[74] Z. Mirzaei, E. Khashabi, and L. Mirzaei, Evalution of the clinical effect of the curcumin pack on reducing and swelling after third molar surgery compared to the routine packs: randomized double--blind experimental, Stud. Med. Sci. 31 (8) (2020) 635–642.
[75] F. Hashemi, S. Kazemi-Darabadi, H. Akbari, and M. Khordadmehr, Evaluation of Curcumin Ointment Effects on Dinitrochlorobenzene-Induced Contact Dermatitis in Mouse, J. Ilam Univ. Med. Sci. 25 (1) (2017) 195–210