Production, Characterization and Application of Nano - Phase Change Materials: A Review
محورهای موضوعی : Application of Textile Products in other Sciences and DisciplinesPouriya Norooz Kermanshahi 1 , Graça Soares 2
1 - Center of Textile Science and Technology (2C2T), Universidade do Minho, Portugal
2 - Center of Textile Science and Technology (2C2T), Universidade do Minho, Portugal
کلید واژه: encapsulation, PCM, Nano-capsules, Thermal regulating,
چکیده مقاله :
Phase Change Materials (PCMs) for heat storage and energy saving has been extensively used in many fields for heating and cooling processes, including building, solar energy, textiles, agriculture, and electronics. PCMs have been getting incredible attention for being low-cost materials and have potential materials for thermal energy storage (TES) with long cycle life. Though, the disadvantages such as flow, result in encapsulation in three scales of Macro, Micro and Nano capsules. Encapsulating PCM reduces the disadvantages and improves the efficiency of PCMs. Different methods for producing PCMs in the scale of nano and core-shell materials, have been developed and the capsules size in relation to parameters such as pH, stirring rate, material selection and preparation method have been investigated. In recent years, this subject has been extensively studied, seeking to find more efficient and safer PCMs. In this context, nanoscale PCMs have been produced and applied to the most diverse products and their performance evaluated. They simply modified and optimized production processes. The novelty of this study lies in the fact that merely a few articles have reviewed nano-encapsulating of PCMs, focusing on new developments on PCM nano-capsules. Moreover, few articles have compared nano and microcapsules of PCMs so far. The analyzed papers suggest that the production methods influence the size of the obtained capsules. The purpose of this article is to make an updated review of the synthesis and application of nano-encapsulated PCMs.
Phase Change Materials (PCMs) for heat storage and energy saving has been extensively used in many fields for heating and cooling processes, including building, solar energy, textiles, agriculture, and electronics. PCMs have been getting incredible attention for being low-cost materials and have potential materials for thermal energy storage (TES) with long cycle life. Though, the disadvantages such as flow, result in encapsulation in three scales of Macro, Micro and Nano capsules. Encapsulating PCM reduces the disadvantages and improves the efficiency of PCMs. Different methods for producing PCMs in the scale of nano and core-shell materials, have been developed and the capsules size in relation to parameters such as pH, stirring rate, material selection and preparation method have been investigated. In recent years, this subject has been extensively studied, seeking to find more efficient and safer PCMs. In this context, nanoscale PCMs have been produced and applied to the most diverse products and their performance evaluated. They simply modified and optimized production processes. The novelty of this study lies in the fact that merely a few articles have reviewed nano-encapsulating of PCMs, focusing on new developments on PCM nano-capsules. Moreover, few articles have compared nano and microcapsules of PCMs so far. The analysed papers suggest that the production methods influence the size of the obtained capsules. The purpose of this article is to make an updated review of the synthesis and application of nano-encapsulated PCMs.
[1] Z. Zhang, and X. Fang, "Study on paraffin/expanded graphite composite phase change thermal energy storage material", Energy Convers. Manag.,vol. 47, no. 3, pp. 303-310. 2006.
[2] B. Zalba, J. M. Marın, L. F. Cabeza, and H. Mehling, "Thermal engineering. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications", Appl. Therm. Eng.,vol. 23, no. 3, pp. 251-283, 2003.
[3] K. Chen, X. Yu, C. Tian, and J. Wang, "Preparation and characterization of form-stable paraffin/polyurethane composites as phase change materials for thermal energy storage", Energy Convers. Manag.,vol.77, pp. 13-21, 2014.
[4.] X. Kong, S. Lu, J. Huang, Z. Cai, and S. Wei, "Buildings. Experimental research on the use of phase change materials in perforated brick rooms for cooling storage", vol. 62, pp. 597-604, 2013.
[5] B. P. Jelle, and S. E. Kalnæs, "Phase Change Materials for Application in Energy-Efficient Buildings", In Cost-Effective Energy Efficient Building Retrofitting. Elsevier, 2017, pp. 57-118.
[6] M. Purusothaman, C. S. Cornilius, R. Siva, "Experimental Investigation of Thermal Performance in a Vehicle Cabin Test Setup With Pcm in the Roof", In: IOP Conference Series: Materials Science and Engineering. IOP Publishingol, vol. 197, p. 12073, 2017.
[7] N. S. Lewis, and G. Crabtree, "Basic research needs for solar energy utilization: report of the basic energy sciences workshop on solar energy utilization" April 18-21, 2005. 2005.
[8] P. Sivasamy, A. Devaraju, and S. Harikrishnan, "Review on Heat Transfer Enhancement of Phase Change Materials (PCMs)", Materials Today: Proc., vol. 5, no. 6, pp. 14423-14431, 2018.
[9] H. Asgharian, E. and Baniasadi, "A review on modeling and simulation of solar energy storage systems based on phase change materials", J. Energy. Storage., vol. 21, pp. 186-201, 2019. doi: 10.1016/j.est.2018.11.025
[10] M. Abuşka, S. Şevik, and A. Kayapunar, "A comparative investigation of the effect of honeycomb core on the latent heat storage with PCM in solar air heater", Appl. Therm. Eng., vol. 148, pp. 684-693, 2019. doi: https://doi.org/10.1016/j.applthermaleng.2018.11.056
[11] A. K. Raj, M. Srinivas, and S. Jayaraj, "A cost-effective method to improve the performance of solar air heaters using discrete macro-encapsulated PCM capsules for drying applications", Appl. Therm. Eng., vol. 146, pp. 910-920, 2019. doi: 10.1016/j.applthermaleng.2018.10.055
[12] F. Zhou, J. Ji, W. Yuan, X. Zhao, and S. Huang, "Study on the PCM flat-plate solar collector system with antifreeze characteristics", Int. J. Heat. Mass. Transf., vol. 129, pp. 357-366, 2019. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.114
[13] R. Meirowitz, "5 - Microencapsulation technology for coating and laminating". In Smart Textile Coatings and Laminates, 2nd ed, WC Smith. Woodhead Publishing, 2019, pp. 117-154,. doi: 10.1016/B978-0-08-102428-7.00005-5
[14] B. B. Paulo, K. Andreola, O. Taranto, A. D. Ferreira, and A. S. Prata, "Coating approach for a Phase Change Material (PCM)", Powder Technol., vol. 341, pp. 147-156, 2019. doi: 10.1016/j.powtec.2018.03.003
[15] D. Sun, M. O. R. Siddiqui, and K. Iqbal, "4 - Specialty testing techniques for smart textiles", In Smart Textile Coatings and Laminates, 2nd, ed WC Smith, Woodhead Publishing; 2019, pp. 99-116. doi: 10.1016/B978-0-08-102428-7.00004-3
[16] B. Pause, "7 - Phase change materials and their application in coatings and laminates for textiles", In Smart Textile Coatings and Laminates, 2nd, ed WC Smith, Woodhead Publishing; 2019, pp. 175-187. doi: 10.1016/B978-0-08-102428-7.00008-0
[17] F. Groh, E. Kappel, C. Hühne, W. Brymerski, "Investigation of fast curing epoxy resins regarding process induced distortions of fibre reinforced composites, Compos. Struct., vol. 207, pp. 923-934, 2019. doi: 10.1016/j.compstruct.2018.09.003
[18] H. Ke, and Q. Wei, "Determining influences of silver nanoparticles on morphology and thermal properties of electrospun polyacrylonitrile-based form-stable phase change composite fibrous membranes loading fatty acid ester/eutectics", Thermochim. Acta., vol. 671, pp. 10-16, 2019. doi:https://doi.org/10.1016/j.tca.2018.11.002
[19] Y. Lu, X. Xiao, J. Fu, "Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning", Chem. Eng. J., vol. 355, pp. 532-539, 2019. doi: 10.1016/j.cej.2018.08.189
[20] D. De Smet, and M. Vanneste, "10 - Responsive textile coatings", In: Smith WC, ed. Smart Textile Coatings and Laminates (Second Edition). Woodhead Publishing, 2019, pp. 237-261. doi: 10.1016/B978-0-08-102428-7.00012-2
[21] B. Pause, "Development of a new cold protective clothing with phase change material", AOCHHVS, pp. 99-100, 1998.
[22] W. Sutterlin, A brief comparison of ice packs, salts, paraffins and vegetable-derived phase change materials. 2014.
[23] J. Weiss, P. Takhistov, D. J. McClements, "Functional materials in food nanotechnology", J. Food Sci., vol. 71, no. 9, pp. R107-R116, 2006.
[24] K. Cho, and M.Choi, "Experimental study on the application of paraffin slurry to high density electronic package cooling", Heat Mass Transf., vol. 36, no. 1, pp. 29-36, 2000.
[25] R. Kandasamy, X. Q. Wang, and A. S. Mujumdar, "Application of phase change materials in thermal management of electronics", Appl. Therm. Eng.,27(17-18):2822-2832, 2007.
[26] M. Telkes, and E. Raymond, "Storing solar heat in chemicals - A report on the Dover house", Heat Vent., vol. 46, no. 11, pp. 80-86, 1949.
[27] J. F. Messerly, G. B. Guthrie Jr, S. S. Todd, H. L. Finke, "Low-temperature thermal data for pentane, n-heptadecane, and n-octadecane Revised thermodynamic functions for the n-alkanes, C5-C18", J. Chem. Eng. Data., vol. 12, no. 3, pp. 338-346, 1967.
[28] R. H. Hansen, inventor; JP Stevens and Co Inc, assignee. Temperature adaptable fabrics. United States patent US, vol. 3, no. 607, 591, 1971.
[29] T. L. Vigo, and C. E. Frost, "Temperature-sensitive hollow fibers containing phase change salts", vol. 52, no. 10, pp. 633-637, 1982.
[30] T. L. Vigo, and C. M. Frost, "Temperature adaptable hollow fibers containing polyethylene glycols", J. Coat. Fabr., vol. 12, no. 4, 243-254, 1983.
[31] T. L. Vigo, and C. M. Frost, "Temperature-adaptable fabrics", Text. Res. J., vol. 55, no. 12, pp. 737-743, 1985.
[32] A. Abhat, " Low temperature latent heat thermal energy storage: heat storage materials", vol. 30, no. 4, pp. 313-332, 1983.
[33] D. Feldman, M. M. Shapiro, and D. Banu, "Organic phase change materials for thermal energy storage", Sol. Energy Mater Sol. Cells, vol. 13, no. 1, pp. 1-10, 1986.
[34] T. L. Vigo, and J. S. Bruno, "Temperature-adaptable textiles containing durably bound polyethylene glycols", vol. 57, no. 7, pp.l 427-429, 1987.
[35] Y. G. Bryant, and D. P.Colvin, "Fabric with reversible enhanced thermal properties", 1994.
[36] X. X. Zhang, Y. F. Fan, X. M. Tao, and K. L. Yick, "Physics. Fabrication and properties of microcapsules and nanocapsules containing n-octadecane", Mater. Chem. Phys., vol. 88, no. 2-3, pp. 300-307, 2004.
[37] Q. Meng, and J. Hu, " Cells S. A poly (ethylene glycol)-based smart phase change material", Sol. Energy Mater Sol. Cells, vol. 92, no. 10, pp. 1260-1268, 2008.
[38] P. Sánchez, M. V. Sánchez-Fernandez, A. Romero, J. F. Rodríguez, and L. Sánchez-Silva, "Development of thermo-regulating textiles using paraffin wax microcapsules", vol. 498, no. 1-2, pp. 16-21, 2010.
[39] L. Bayés-García, L. Ventola, R. Cordobilla, R. Benages, T. Calvet, M. A. Cuevas-Diarte, "Phase change materials (PCM) microcapsules with different shell compositions: preparation, characterization and thermal stability", Sol. Energy. Mater. Sol. Cells., vol. 94, no.7, pp. 1235-1240, 2010.
[40] Z. H. Chen, F. Yu, X. R. Zeng, Z. G. Zhang, "Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier", Appl. Energy., vol. 91, no. 1, pp. 7-12, 2012.
[41] S. T. Latibari, M. Mehrali, M. Mehrali, T. M. I. Mahlia, and H. S. C. Metselaar, "Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol–gel method. Energy., vol. 61, pp. 664-672, 2013.
[42] S. Park, Y. Lee, Y. S. Kim, H. M. Lee, J. H. Kim, I. W. Cheong, and W. G. Koh, " Magnetic nanoparticle-embedded PCM nanocapsules based on paraffin core and polyurea shell", Colloids. Surfaces. A Physicochem. Eng. Asp., vol. 450, pp. 46-51, 2014.
[43] K. Tumirah, M. Z. Hussein, Z. Zulkarnain, and R. Rafeadah, "Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage", Energy., vol. 66, pp. 881-890, 2014.
[44] Y. Wang, Y. Zhang, T. Xia, W. Zhao, and W. Yang, "Effects of fabricated technology on particle size distribution and thermal properties of stearic–eicosanoic acid/polymethylmethacrylate nanocapsules", Sol. Energy. Mater. Sol. Cells., vol. 120, pp. 481-490, 2014.
[45] A. Sarı, C. Alkan, A. Biçer, A. Altuntaş, and C. Bilgin, "Micro/nanoencapsulated n-nonadecane with poly (methyl methacrylate) shell for thermal energy storage", Energy. Convers. Manag., vol. 86, pp. 614-621, 2014.
[46] A. Sarı, C. Alkan, D. K. Döğüşcü, and Ç. Kızıl, "Micro/nano encapsulated n-tetracosane and n-octadecane eutectic mixture with polystyrene shell for low-temperature latent heat thermal energy storage applications", Sol. Energy., vol. 115, pp. 195-203, 2015.
[47] A. Sarı, C. Alkan, and A. Altıntaş, "Preparation, characterization and latent heat thermal energy storage properties of micro-nanoencapsulated fatty acids by polystyrene shell", Appl. Therm. Eng., vol. 73, no. 1, pp. 1160-1168, 2014.
[48] M. Sheikholeslami, "Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM", J. Taiwan. Inst. Chem. Eng., vol. 86, pp. 25-41, 2018. doi:10.1016/J.JTICE.2018.03.013
[49] M. Sheikholeslami, and A. Ghasemi, "Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM", Int. J. Heat. Mass. Transf., vol. 123, pp. 418-431, 2018. doi:10.1016/J.IJHEATMASSTRANSFER.2018.02.095
[50] M. Sheikholeslami, "Numerical modeling of nano enhanced PCM solidification in an enclosure with metallic fin", J. Mol. Liq., vol. 259, pp. 424-438, 2018. doi:10.1016/J.MOLLIQ.2018.03.006
[51] M. Sheikholeslami," Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles" J. Mol. Liq., vol. 263, pp. 303-315, 2018. doi:10.1016/J.MOLLIQ.2018.04.144
[52] M. Sheikholeslami, "Finite element method for PCM solidification in existence of CuO nanoparticles", J. Mol. Liq., vol. 265, pp. 347-355, 2018. doi:10.1016/J.MOLLIQ.2018.05.132
[53] G. Fang, H. Li, F. Yang, X. Liu, S.Wu Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem Eng J. 2009;153(1-3):217-221.
[54] H. Yuan, H. Bai, X. Lu, X. Zhang, J. Zhang, Z. Zhang, and L.Yang, "Size controlled lauric acid/silicon dioxide nanocapsules for thermal energy storage", Sol. Energy. Mater. Sol. Cells., vol. 191, pp. 243-257, 2019. doi:10.1016/j.solmat.2018.11.019
[55] H. Yuan, H. Bai, X. Zhang, J. Zhang, Z. Zhang, L.Yang Synthesis and characterization of stearic acid/silicon dioxide nanoencapsules for solar energy storage. Sol Energy. 2018;173(July):42-52. doi:10.1016/j.solener.2018.07.049
[56] G. V. Belessiotis, K. G. Papadokostaki, E. P. Favvas, E. K. Efthimiadou, and S. Karellas, "Preparation and investigation of distinct and shape stable paraffin/SiO2 composite PCM nanospheres" Energy. Convers. Manag., vol. 168, pp. 382-394, 2018. doi:10.1016/j.enconman.2018.04.059
[57] S. T. Latibari, M. Mehrali, and M. Mehrali, "Facile synthesis and thermal performances of stearic acid/titania core/shell nanocapsules by sol–gel method" Energy., vol. 85, pp. 635-644, 2015.
[58] T. S. Wu, S. Y. Li, S. W. Weng, and R. C. C. Tsiang, "Synthesis and characterization of poly (p-chloromethylstyrene) nanocomposite comprising covalently bonded carbon nanocapsules: Superiority of thermal properties to a physical blend", Polymer (Guildf)., vol. 53, no. 12, pp. 2347-2355, 2012.
[59] N. Şahan, and H. Paksoy, "Determining influences of SiO2 encapsulation on thermal energy storage properties of different phase change materials", Sol. Energy. Mater. Sol. Cells., vol. 159, pp. 1-7, 2017.
[60] C. J. Ho, Y. Z. Chen, F. J. Tu, and C. M. Lai, "Thermal performance of water-based suspensions of phase change nanocapsules in a natural circulation loop with a mini-channel heat sink and heat source", Appl. Therm. Eng., vol. 64, no. 1-2, pp. 376-384, 2014.
[61] J. Shi, X. Wu, X. Fu, and R. Sun, "Synthesis and thermal properties of a novel nanoencapsulated phase change material with PMMA and SiO2 as hybrid shell materials", Thermochim. Acta., vol. 617, pp. 90-94, 2015.
[62] Y. Zhu, Y. Chi, and S. Liang, "Novel metal coated nanoencapsulated phase change materials with high thermal conductivity for thermal energy storage", Sol. Energy. Mater. Sol. Cells., vol. 176, pp. 212-221, 2018.
[63] I. Hussain, and S. Kalaiselvam, "Bifunctional nanoencapsulated eutectic phase change material core with SiO2 /SnO2 nanosphere shell for thermal and electrical energy storage", Mater. Des., vol. 154, pp. 291-301, 2018.
[64] S. Liang, Q, Li, and Y. Zhu, "Nanoencapsulation of n-octadecane phase change material with silica shell through interfacial hydrolysis and polycondensation in miniemulsion", Energy., vol. 93, pp. 1684-1692, 2015.
[65] Y. Konuklu, H. O. Paksoy, and M. Unal, "Nanoencapsulation of n-alkanes with poly (styrene-co-ethylacrylate) shells for thermal energy storage", Appl. Energy.,;150:335-340, 2015.
[66] B. Mohammadi, F. S. Najafi, H. Ranjbar, J. Mohammadi, and M. Zakaryazadeh, "Nanoencapsulation of butyl palmitate in polystyrene-co-methyl methacrylate shell for thermal energy storage application", Energy. Build., vol. 118, pp. 99-105, 2016.
[67] Y. Fang, S. Kuang, X. Gao, and Z. Zhang, "Preparation and characterization of novel nanoencapsulated phase change materials", Energy. Convers. Manag., vol. 49, no. 12, pp. 3704-3707, 2008.
[68] Y. Zhu, S. Liang, and K. Chen, "Preparation and properties of nanoencapsulated n-octadecane phase change material with organosilica shell for thermal energy storage", Energy. Convers. Manag., vol. 105, pp. 908-917, 2015.
[69] Z. Rao, S. Wang, and F. Peng, "Molecular dynamics simulations of nano-encapsulated and nanoparticle-enhanced thermal energy storage phase change materials" Int. J. Heat. Mass. Transf., vol. 66, pp. 575-584, 2013. doi:10.1016/j.ijheatmasstransfer.2013.07.065.
[70] Y. Fang, H. Yu, W. Wan, X. Gao, and Z. Zhang, "Preparation and thermal performance of polystyrene/n-tetradecane composite nanoencapsulated cold energy storage phase change materials", Energy. Convers. Manag., vol. 76, pp. 430-436, 2013.
[71] Y. Fang, X. Liu, X. Liang, H. Liu, X. Gao, and Z. Zhang, "Ultrasonic synthesis and characterization of polystyrene/n-dotriacontane composite nanoencapsulated phase change material for thermal energy storage", Appl. Energy., vol. 132, pp. 551-556, 2014.
[72] M. Fuensanta, U. Paiphansiri, M. D. Romero-Sánchez, C. Guillem, Á. M. López-Buendía, and K. Landfester, "Thermal properties of a novel nanoencapsulated phase change material for thermal energy storage", Thermochim. Acta., vol. 565, pp. 95-101, 2013.
[73] M. Li, Z. Wu, and J. Tan, "Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol–gel method", Appl. Energy., vol. 92, pp. 456-461, 2012.
[74] S. Han, S. Lyu, S. Wang, and F. Fu, "High-intensity ultrasound assisted manufacturing of melamine-urea-formaldehyde/paraffin nanocapsules", Colloids. Surfaces. A. Physicochem. Eng. Asp., vol. 568, pp. 75-83, 2019. doi:https://doi.org/10.1016/j.colsurfa.2019.01.054
[75] H. Yuan, H. Bai, Lu X, et al. Size controlled lauric acid/silicon dioxide nanocapsules for thermal energy storage. Sol Energy Mater Sol Cells. 2019;191:243-257.
[76] T. Morimoto, Y. Kawana, K. Saegusa, and H. Kumano, "Supercooling characteristics of phase change material particles within phase change emulsions", Int. J. Refrig., vol. 99, pp. 1-7, 2019. doi:10.1016/j.ijrefrig.2018.11.039
[77] J. H. Park, J. Lee, and S. Wi, "Optimization of phase change materials to improve energy performance within thermal comfort range in the South Korean climate", Energy. Build., vol. 185, pp. 12-25, 2019. doi:10.1016/j.enbuild.2018.12.013
[78] G. Wang, J. Zhou, S. R. Elliott, and Z. Sun, "Role of carbon-rings in polycrystalline GeSb2Te4 phase-change material", J. Alloys. Compd., vol. 782, pp. 852-858, 2019. doi:10.1016/j.jallcom.2018.12.228
[79] J. A. Noël, and M. A.White, "Heat capacities of potential organic phase change materials", J. Chem. Thermodyn., vol. 128, pp. 127-133, 2019. doi:10.1016/j.jct.2018.08.014
[80] C. Li, H. Yu, Y. Song, and Z. Liu, "Novel hybrid microencapsulated phase change materials incorporated wallboard for year-long year energy storage in buildings", Energy. Convers. Manag., vol. 183, pp. 791-802, 2019. doi:10.1016/j.enconman.2019.01.036
[81] H. Ling, L. Wang, C. Chen, and H. Chen, "Numerical investigations of optimal phase change material incorporated into ventilated walls", Energy., vol. 172, pp. 1187-1197, 2019. doi:10.1016/j.energy.2019.01.066
[82] C. Li, B. Xie, D. Chen, J. Chen, W. Li, Z. Chen, S. W. Gibb, and Y. Long, "Ultrathin graphite sheets stabilized stearic acid as a composite phase change material for thermal energy storage", Energy., vol. 166, pp. 246-255, 2019. doi:https://doi.org/10.1016/j.energy.2018.10.082
[83] E. Yin, Q. Li, D. Li, and Y. Xuan, "Experimental investigation on effects of thermal resistances on a photovoltaic-thermoelectric system integrated with phase change materials", Energy., vol. 169, pp. 172-185, 2019. doi:10.1016/j.energy.2018.12.035
[84] N. A. Lutsenko, and S. S. Fetsov, "Influence of gas compressibility on gas flow through bed of granular phase change material" Int. J. Heat. Mass. Transf., vol. 130, pp. 693-699, 2019. doi:10.1016/j.ijheatmasstransfer.2018.10.100
[85] X. Sun, Y. Chu, M. A. Medina, Y. Mo, S. Fan, and S. Liao, "Experimental investigations on the thermal behavior of phase change material (PCM) in ventilated slabs", Appl. Therm. Eng., vol. 148, pp. 1359-1369, 2019. doi:10.1016/j.applthermaleng.2018.12.032
[86] Z. Yang, Y. Deng, and J. Li, "Preparation of porous carbonized woods impregnated with lauric acid as shape-stable composite phase change materials", Appl. Therm. Eng., vol. 150, pp. 967-976, 2019. doi:10.1016/j.applthermaleng.2019.01.063
[87] Z. Liu, Z. Chen, and F.Yu, "Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler", Sol. Energy. Mater. Sol. Cells., vol. 192, pp. 72-80, 2019. doi:10.1016/j.solmat.2018.12.014
[88] Y. Fang, W. Fu, S. Wang, X. Gao, Z. Zhang, and Y. Fang, "Characterization and thermal performance of microencapsulated sodium thiosulfate pentahydrate as phase change material for thermal energy storage", Sol. Energy. Mater. Sol. Cells., vol. 193, pp. 149-156, 2019. doi:10.1016/j.solmat.2019.01.007
[89] H. Shi, G. Tang, X. Zhang, W. Li, and X. Wang, "Fabrication and morphological characterization of microencapsulated phase change materials (MicroPCMs) and macrocapsules containing MicroPCMs for thermal energy storage", Energy., vol. 38, no. 1, pp. 249-254, 2012. doi:10.1016/j.energy.2011.12.005
[90] W. Li, R. Zhang, and N. Jiang, "Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage", Energy., vol. 57, pp. 607-614, 2013. doi:10.1016/j.energy.2013.05.007
[91] Y. H. Yu, D. Q .Ng, H. Y. Lian, Y. F. Shih, and Y. L. Tseng, "Synthesis of novel phase change material microcapsule and its application", Polymer (Guildf)., vol. 133, pp. 250-262, 2017. doi:10.1016/j.polymer.2017.11.046
[92] R. Vicente, and T. Silva, "Brick masonry walls with PCM macrocapsules: An experimental approach", Appl. Therm. Eng., vol. 67, no. 1-2, pp. 24-34, 2014. doi:10.1016/j.applthermaleng.2014.02.069
[93] K. Wei, Y. Wang, and B. Ma, "Effects of microencapsulated phase change materials on the performance of asphalt binders", Renew. Energy., vol. 132, pp. 931-940, 2019. doi:10.1016/j.renene.2018.08.062
[94] S. Lashgari, A. R. Mahdavian, H. Arabi, V. Ambrogi, and V. Marturano, "Preparation of acrylic PCM microcapsules with dual responsivity to temperature and magnetic field changes", Eur. Polym. J., vol.101, pp. 18-28, 2018. doi:10.1016/j.eurpolymj.2018.02.011
[95] X. Huo, W. Li, and Y. Wang, "Chitosan composite microencapsulated comb-like polymeric phase change material via coacervation microencapsulation", Carbohydr. Polym., vol. 200, pp. 602-610, 2018. doi:10.1016/j.carbpol.2018.08.003
[96] T. Qian, B. Dang, Y. Chen, C. Jin, J. Qian, and Q. Sun, "Fabrication of magnetic phase change n-eicosane @ Fe3O4/SiO2 microcapsules on wood surface via sol-gel method", J. Alloys. Compd., vol. 772, pp. 871-876, 2019. doi:10.1016/j.jallcom.2018.09.125
[97] F. Gao, X. Wang, and D. Wu, "Design and fabrication of bifunctional microcapsules for solar thermal energy storage and solar photocatalysis by encapsulating paraffin phase change material into cuprous oxide", Sol. Energy. Mater. Sol. Cells., vol. 168, pp. 146-164, 2017. doi:10.1016/j.solmat.2017.04.026
[98] Q. Yu, F. Tchuenbou-Magaia, B. Al-Duri, Z. Zhang, Y. Ding, and Y. Li, "Thermo-mechanical analysis of microcapsules containing phase change materials for cold storage", Appl. Energy., vol. 211, pp. 1190-1202, 2018. doi:10.1016/j.apenergy.2017.12.021
[99] R. Al-Shannaq, J. Kurdi, S. Al-Muhtaseb, and M. Farid, "Innovative method of metal coating of microcapsules containing phase change materials", Sol. Energy., vol. 129, pp. 54-64, 2016. doi:10.1016/j.solener.2016.01.043
[100] N. Sheng, C. Zhu, H. Sakai, T. Akiyama, and T. Nomura, "Synthesis of Al-25 wt% Si@Al2O3@Cu microcapsules as phase change materials for high temperature thermal energy storage", Sol. Energy. Mater. Sol. Cells., vol. 191, pp. 141-147, 2019. doi:10.1016/j.solmat.2018.11.013
[101] H. Li, M. Jiang, Q. Li, D. Li, J. Huang, W. Hu, L. Dong, H. Xie, and C. Xiong, "Facile preparation and thermal performances of hexadecanol/crosslinked polystyrene core/shell nanocapsules as phase change material", Polym. Compos., vol. 35, no. 11, pp. 2154-2158, 2014.
[102] C. Chen, Z. Chen, X. Zeng, X. Fang, and Z. Zhang, "Fabrication and characterization of nanocapsules containing n-dodecanol by miniemulsion polymerization using interfacial redox initiation", Colloid. Polym. Sci., vol. 290, no. 4, pp. 307-314, 2012. doi:10.1007/s00396-011-2545-2
[103] X. Geng, W. Li, Y. Wang, J. Lu, J. Wang, N. Wang, J. Li, and X. Zhang, " Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing", Appl. Energy., vol. 217, pp. 281-294, 2018. doi:10.1016/j.apenergy.2018.02.150
[104] M. Graham, E. Shchukina, P. F. De Castro, and D. Shchukin, "Nanocapsules containing salt hydrate phase change materials for thermal energy storage", J. Mater. Chem. A., vol. 4, no. 43, pp. 16906-16912, 2016. doi:10.1039/c6ta06189c
[105] T. Khadiran, M. Z. Hussein, Z. Zainal, and R. Rusli, "Nano-encapsulated n-nonadecane using vinyl copolymer shell for thermal energy storage medium", Macromol. Res., vol. 23, no. 7, pp. 658-669, 2015. doi:10.1007/s13233-015-3088-z
[106] H. Yuan, H. Bai, X. Zhang, J. Zhang, Z. Zhang, and L. Yang, "Synthesis and characterization of stearic acid/silicon dioxide nanoencapsules for solar energy storage", Sol. Energy., vol.173, pp. 42-52, 2018.
[107] M. Alizadeh, D. Azizi, A. Rezvanpour, M. Hasanzadeh, and M. Rezvanpour, "Synthesis and characterization of micro-nanoencapsulated n -eicosane with PMMA shell as novel phase change materials for thermal energy storage", Mater. Chem. Phys., vol. 215, pp. 299-304, 2018. doi:10.1016/j.matchemphys.2018.05.044
[108] L. I. N. Heming, S. I. Qin, Y. A. N. G. Lei, and W. U. Minghua, "PCM nanocapsules and smart thermoregulation cotton textiles made thereof" J. Text. Res., vol. 30, no. 5, pp. 95-99, 2009. Available: http://en.cnki.com.cn/Article_en/CJFDTOTAL-FZXB200905022.htm.
[109] Y Zhu, Y Qin, C Wei, S Liang, X Luo, J Wang, and L Zhang, "Nanoencapsulated phase change materials with polymer-SiO2 hybrid shell materials: Compositions, morphologies, and properties". Energy Convers. Manag., vol. 164, pp.83-92, 2018.
[110] D. Sun, and K. Iqbal, "Synthesis of functional nanocapsules and their application to cotton fabric for thermal management" Cellulose., vol. 24, no. 8, pp. 3525-3543, 2017. doi:10.1007/s10570-017-1326-6
[111] K. Iqbal, and D. Sun, "Synthesis of nanoencapsulated Glauber’s salt using PMMA shell and its application on cotton for thermoregulating effect", Cellulose., vol. 25, no. 3, pp. 2103-2113, 2018. doi:10.1007/s10570-018-1692-8.