اثر نوع و منبع انرژی جیره بر فعالیت آنزیم های آنتی اکسیدانی، ترکیبات لیپیدی خون و بیان ژن ضد التهابی (Il-4)در جوجه های گوشتی تحت تنش گرمایی
نعمت الله دیانی
1
(
ازاد اسلامی واخد علوم و تحقیقات
)
محمد چمنی
2
(
گروه علوم دامی دانشگاه ازاد اسلامی
)
پروین شورنگ
3
(
گروه دامپزشکی و علوم دامی پژوهشکدهکشاورزی سازمان انرژی اتمی
)
علی اصغر صادقی
4
(
عضوهیئت علمی واحد علوم و تحقیقات تهران
)
آسا ابراهیمی
5
(
آزاد اسلامی واحد علوم و تحقیقات
)
کلید واژه: جوجه گوشتی, روغن سویا, بیان ژن, اینترلوکین-4, تنش گرمایی,
چکیده مقاله :
هدف: راهکارهای مختلفی برای غلبه بر تنش گرمایی در جوجه های گوشتی وجود دارد. یکی از راهکارها، دستکاری نوع منبع و سطح انرژی جیره است و اثراتی که بر شاخص های آنتی اکسیدانی و فراسنجه های خونی دارد مورد توجه محققان می باشد. پژوهش کنونی به منظور بررسی اثر نوع منبع و مقدار انرژی جیره بر فعالیت آنزیم های آنتی اکسیدانی، ترکیبات لیپیدی خون، شمارش سلول های خونی و بیان ژن اینترلوکین-4 در جوجههای گوشتی در معرض تنش گرمایی انجام شد. مواد و روش ها: تعداد 450 قطعه جوجه گوشتی سویه راس یک روزه در قالب طرح کاملا تصادفی به شش گروه آزمایشی و پنج تکرار تقسیم شدند. جوجه ها از روز 12 تا 42 آزمایش در معرض تنش گرمایی قرار گرفتند و با جیره حاوی نوع مختلف منبع انرژی و سطح انرژی بنابر استاندارد سویه راس یا کمتر و بیشتر از آن شامل گروه شاهد (C): دانه ذرت و سطح استاندارد؛ T1: دانه ذرت و 3 درصد انرژی کمتر؛ T2: دانه ذرت و 6 درصد انرژی کمتر ؛ T3: دانه ذرت و روغن سویا و سطح استاندارد؛ T4: دانه ذرت و روغن سویا و 3 درصد انرژی بیشتر و T5: دانه ذرت و روغن سویا و 6 درصد انرژی بیشتر تغذیه شدند. نتایج: کاهش 6 درصدی غلظت انرژی جیره سبب افزایش معنی دار غلظت مالون دی آلدئید و کاهش معنی دار فعالیت آنزیم های آنتی اکسیدانی در پلاسمای خون جوجه های گوشتی شد. بیشترین ظرفیت آنتی اکسیدانی پلاسما به جوجه های دریافت کننده جیره T3 و T4 تعلق داشت. کمترین غلظت تری گلیسیرید در پلاسما در گروه شاهد (C) و بیشترین غلظت در گروه های T1 و T2 مشاهده شد. کمترین شمارش سلول های قرمز و سفید خون به جوجه های دریافت کننده جیره با کاهش 6 درصدی در سطح انرژی تعلق داشت و بیشترین شمارش در جوجه های دریافت کننده روغن سویا مشاهده شد. کاهش 3 درصدی در سطح انرژی جیره سبب افزایش بیان ژن اینترلوکین-4 شد ولی جوجه های با محدودیت 6 درصدی در سطح انرژی بیان ژن اینترلوکین-4 کمتری نسبت به گروه شاهد داشتند. افزایش سطح انرژی با افزودن روغن سویا سبب کاهش غیرمعنی دار بیان این ژن شد. نتیجه گیری: استفاده از سطح انرژی توصیه شده سویه راس 308 و استفاده از روغن سویا (2 درصد در دوره رشد و 4 درصد در دوره پایانی) به جای بخشی از دانه ذرت بهترین نتیجه را در پژوهش کنونی داشت.
چکیده انگلیسی :
Aim: Different strategies were introduced in the poultry industry to overcome heat stress. Manipulation in the energy source and level is one of important practical issues. The effects of energy manipulation on antioxidant indices and blood parameters are of interest in research. The present study was conducted to evaluate the effect of dietary energy source and level on the activity of antioxidant enzymes, blood lipid compositions, blood cell counts and interleukin-4 gene expression in broiler chickens under heat stress. Materials and Methods: One-day-old broiler chickens (n=450) were assigned to six treatments and five replicates in a completely random design. The chickens were exposed to heat stress from day 12 to the 42 of age and were fed with diets containing different energy source and level. The energy level were according to the standard of Ross strain, less or more, as: the control group (C): corn grain and standard level; T1: corn grain and 3% less energy; T2: corn grain and 6% less energy; T3: corn grain and soybean oil and standard level; T4: Corn grain and soybean oil and 3% more energy and T5: Corn grain and soybean oil and 6% more energy. Results: Energy restriction (6% less than standard) significantly increased plasma malondialdehyde level and decreased the activity of antioxidant enzymes. The highest plasma antioxidant capacity was observed in chickens receiving T3 and T4 diets. The lowest level of triglycerides was observed in the control group (C) and the highest level was observed in T1 and T2 groups. The lowest count of red and white blood cells was observed in chickens receiving the diet with 6% less energy level, and the highest count was observed in the chickens receiving soybean oil. A 3% decrease in the energy level of the diet increased the expression of the interleukin-4 gene, but chickens receiving 6% less energy had lower interleukin-4 gene expression than the control group. Increasing the energy level with the addition of soybean oil caused a non-significant decrease in the expression level of interleukin-4 gene. Conclusion: The recommended energy level for the Ross 308 strain worked best and the use of soybean oil (2% in the grower period and 4% in the finisher period) instead of a part of the corn grain had the best results in the current study.
1. Kpomasse, C. C., Oke, O. E., Houndonougbo, F. M., and Tona, K. 2021. Broiler production challenges in the tropics: A review. Veterinary Medicine and Science, 7(3), 831-842.
2. Buzała M, Janicki B, Czarnecki R. Consequences of different growth rates in broiler breeder and layer hens on embryogenesis, metabolism and metabolic rate: a review. Poultry Science. 2015; 94(4):728-33.
3. Liu L, Ren M, Ren K, Jin Y, Yan M. Heat stress impacts on broiler performance: a systematic review and meta-analysis. Poultry Science. 2020; 99(11):6205-11.
4. Habashy WS, Milfort MC, Rekaya R, Aggrey SE. Cellular antioxidant enzyme activity and biomarkers for oxidative stress are affected by heat stress. International journal of biometeorology. 2019; 63:1569-84.
5. Kapetanov M, Pajić M, Ljubojević D, Pelić M. Heat stress in poultry industry. Archives of Veterinary Medicine. 2015; 8(2):87-101.
6. Daghir NJ. Nutritional strategies to reduce heat stress in broilers and broiler breeders. Lohmann information. 2009; 44(1):6-15.
7. Sayed-Tawfeek S, Hassanin KMA. Youssef, I.M.I. The Effect of Dietary Supplementation of Some Antioxidants on Performance, Oxidative Stress, and Blood Parameters in Broilers under Natural Summer Conditions Journal of World's Poultry Research, 2014; 4: 10-19.
8. Ahmad T, Khalil T, Mushtag T, Mirza MA, Nadeem A, Barabar ME, Ahmad G. Effect of KCl supplementation in drinking water on broiler performance under heat stress conditions. Poultry Science, 2008; 87: 1276-1280.
9. Ebrahimzadeh SK, Farhoomand P, Noori K. Immune response of broiler chickens fed diets supplemented with different level of chromium methionine under heat stress Conditions Asian-Australian Journal of Animal Science, 2012;25: 256-260.
10. Ipek, A., Canbolat O., Karabulut, A. The Effect of Vitamin E and Vitamin C on the Performance of Japanese Quails (Coturnix Coturnix Japonica) Reared under Heat Stress during Growth and Egg Production Period. Asian-Australian Journal of Animal Science, 2007; 20: 252-256.
11. Ghazalah, A.A., Abd-Elsamee M.O., Ali, A.M. Influence of dietary energy and poultry fat on the response of broiler chicks to heat stress. International Journal of Poultry Science, 2008; 7: 355-359.
12. Sadeghi A.A., Mirmohseni, M., Shawrang, P. and Aminafshar M., The effect of soy oil addition to the diet of broiler chicks on the immune response, Turkish Journal of Veterinary and Animal Sciences, 2013; 37: 264-270.
13. Yan F, Coto C, Wang Z, Cerrate S, Watkins SE, Waldroup PW. Comparison of nutrient recommendations for broilers. International Journal of Poultry Science. 2010; 9(11):1006-14.
14. Aviagen. 2019. Ross nutrition specifications. Accessed Dec. 2020. https://en.aviagen.com/assets/Tech_Center/Ross_Broiler/RossBroilerNutritionSpecs2019-EN.pdf.
15. Shakouri MD, Malekzadeh M. Responses of broiler chickens to the nutrient recommendations of NRC (1994) and the Ross broiler management manual. Revista Colombiana de Ciencias Pecuarias. 2016; 29(2):91-8.
16. Tan L, Rong D, Yang Y, Zhang B. Effect of oxidized soybean oils on oxidative status and intestinal barrier function in broiler chickens. Brazilian Journal of Poultry Science. 2018; 20:333-42.
17. El-Katcha MI, El-Kholy ME, Soltan MA, El-Gayar AH. Effect of dietary omega-3 to omega-6 ratio on growth performance, immune response, carcass traits and meat fatty acids profile of broiler chickens. Poultry Science Journal. 2014; 2(2):71-94.
18. Alagawany M, Elnesr SS, Farag MR, Abd El-Hack ME, Khafaga AF, Taha AE, Tiwari R, Yatoo MI, Bhatt P, Khurana SK, Dhama K. Omega-3 and omega-6 fatty acids in poultry nutrition: effect on production performance and health. Animals. 2019; 9(8):573.
19. Sadeghi AA, Mirmohseni M, Shawrang P, AMINAFSHAR M. The effect of soy oil addition to the diet of broiler chicks on the immune response. Turkish Journal of Veterinary & Animal Sciences. 2013; 37(3):264-70.
20. Nitsan Z, Dvorin A, Zoref Z, Mokady S. Effect of added soyabean oil and dietary energy on metabolisable and net energy of broiler diets. British Poultry Science. 1997; 38(1):101-6.
21. Saleh KM, Al-Zghoul MB. Effect of acute heat stress on the mRNA levels of cytokines in broiler chickens subjected to embryonic thermal manipulation. Animals. 2019; 9(8):499.
22. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001; 25(4):402-8. Steel RG, Torrie JH. Principles and procedures of statistics: a biometrical approach. New York, NY, USA: McGraw-Hill; 1986.
23. Draper HH, Hadley M. Malondialdehyde determination as index of lipid Peroxidation. InMethods in enzymology 1990 Jan 1 (Vol. 186, pp. 421-431). Academic press.
24. Elbaz AM, Zaki EF, Salama AA, Badri FB, Thabet HA. Assessing different oil sources efficacy in reducing environmental heat-stress effects via improving performance, digestive enzymes, antioxidant status, and meat quality. Scientific Reports. 2023; 13(1):20179.
25. Matthaus B, Özcan MM. Fatty acid and tocopherol contents of several soybean oils. Natural Product Research. 2014; 28(8):589-92.
26. Jehl F, Désert C, Klopp C, Brenet M, Rau A, Leroux S, Boutin M, Lagoutte L, Muret K, Blum Y, Esquerré D. Chicken adaptive response to low energy diet: main role of the hypothalamic lipid metabolism revealed by a phenotypic and multi-tissue transcriptomic approach. BMC genomics. 2019; 20:1-6.
27. Gao Z, Duan Z, Zhang J, Zheng J, Li F, Xu G. Effects of oil types and fat concentrations on production performance, egg quality, and antioxidant capacity of laying hens. Animals. 2022; 12(3):315.
28. Dvorin A, Zoref ZI, Mokady SH, Nitsan ZA. Nutritional aspects of hydrogenated and regular soybean oil added to diets of broiler chickens. Poultry Science. 1998; 77(6):820-5.
29. Lindblom SC, Gabler NK, Bobeck, EA, Kerr BJ. Oil source and peroxidation status interactively affect growth performance and oxidative status in broilers from 4 to 25 d of age. Poult. Sci. 2019; 98: 1749–1761.
30. Fontana L. The scientific basis of caloric restriction leading to longer life. Curr. Opin. Gastroenterol. 2009; 25:144–150.
31. Zainal T., Oberley T., Allison D., Szweda L., Weindruch R. Caloric restriction of rhesus monkeys lowers oxidative damage in skeletal muscle. FASEB J. 2000; 14: 1825–1836.
32. Cho C. Modulation of glutathione and thioredoxin systems by calorie restriction during the aging process. Exp. Gerontol. 2003; 38: 539–548.
33. Griela E, Paraskeuas V, Mountzouris KC. Effects of diet and phytogenic inclusion on the antioxidant capacity of the broiler chicken gut. Animals. 2021; 11(3):739.
34. Çetin E, Güçlü BK. Effect of dietary l‐carnitine supplementation and energy level on oxidant/antioxidant balance in laying hens subjected to high stocking density. Journal of animal physiology and animal nutrition. 2020; 104(1):136-43.
35. Helkin A, Stein JJ, Lin S, Siddiqui S, Maier KG, Gahtan V. Dyslipidemia part 1–review of lipid metabolism and vascular cell physiology. Vasc Endovascular Surg. 2016; 50:107–18.
36. Siritarino PW. Effects of diet on high-density lipoprotein cholesterol. Curr Atheroscler Rep. 2011; 13:453–60. doi: 10.1007/s11883-011-0207-y
37. Khan TJ, Kuerban A, Razvi SS. In vivo evaluation of hypolipidemic and antioxidative effect of ‘Ajwa’ (Phoenix dactylifera L.) date seed-extract in high-fat diet-induced hyperlipidemic rat model. Biomed Pharmacother. 2018; 107:675–80.
38. Sudatri NW, Dewi GA, Mahardika IG, Bidura IG. Kidney histology and broiler serum creatinine levels supplemented with a mixture of water extract of turmeric and tamarind fruit. International Journal of Fauna and Biological Studies. 2021; 8(1):95-100.
39. Ashrafi H, Sadeghi AA, Chamani, M. 'Effect of selenium supplementation on antioxidant indices and metabolism-related hormones in rats exposed to heat stress', Iranian Journal of Biological Sciences, 2023; 17(4): 35-47.
40. Jamei M, Sadeghi AA, Chamani M. 'The effect of zinc-methionine supplementation on antioxidant status and expression of interleukin-4 and interleukin-6 genes in female rats under heat stress', Iranian Journal of Biological Sciences, 2023; 17(3), pp. 29-39.
41. Malyar RM, Li H, Liu D, Abdulrahim Y, Farid RA, Gan F, Ali W, Enayatullah H, Banuree SA, Huang K, Chen X. Selenium/Zinc-Enriched probiotics improve serum enzyme activity, antioxidant ability, inflammatory factors and related gene expression of Wistar rats inflated under heat stress. Life sciences. 2020; 248: 117464.
42. Karadeniz F, Karadeniz Y, Altuntaş E. Systemic immune-inflammation index, and neutrophil to-lymphocyte and platelet-to-lymphocyte ratios can predict clinical outcomes in patients with acute coronary syndrome. Cardiovasc J Afr. 2023; 34:1-7.
43. Shini S, Shini A, Kaiser P. Cytokine and chemokine gene expression profiles in heterophils from chickens treated with corticosterone. Stress. 2010; 13(3):185-94.
44. Kubena LF, May JD, Reece FN, Deaton JW. Hematocrit and hemoglobin of broilers as influenced by environmental temperature and dietary iron level. Poultry science. 1972; 51(3):759-63.
45. Fallon PG, Jolin HE, Smith P, Emson CL, Townsend MJ, Fallon R, Smith P, McKenzie AN. IL-4 induces characteristic Th2 responses even in the combined absence of IL-5, IL-9, and IL-13. Immunity. 2002; 17(1):7-17.
46. Vannier E, Miller LC, Dinarello CA. Coordinated antiinflammatory effects of interleukin 4: interleukin 4 suppresses interleukin 1 production but up-regulates gene expression and synthesis of interleukin 1 receptor antagonist. Proceedings of the National Academy of Sciences. 1992; 89(9):4076-80.