Gautama and Almost Gautama Algebras and their associated logics
محورهای موضوعی : Transactions on Fuzzy Sets and SystemsJuan M. Cornejo 1 , Hanamantagouda P. Sankappanavar 2
1 - Departamento de Matematica, Universidad Nacional del Sur, INMABB-CONICET, Bahia Blanca, Argentina.
2 - Department of Mathematics, State University of New York, New Paltz, NY, USA.
کلید واژه: Regular double Stone algebra, regular Kleene Stone algebra, Gautama algebra, Almost Gautama algebra, Almost Gautama Heyting algebra, subdirectly irreducible algebra, simple algebra, logic AG, logic G, logic RDBLSt, logic RKLSt.,
چکیده مقاله :
Recently, Gautama algebras were defined and investigated as a common generalization of the variety RDBLSt of regular double Stone algebras and the variety RKLSt of regular Kleene Stone algebras, both of which are, in turn, generalizations of Boolean algebras. Those algebras were named in honor and memory of the two founders of Indian Logic–Akshapada Gautama and Medhatithi Gautama. The purpose of this paper is to define and investigate a generalization of Gautama algebras, called “Almost Gautama algebras (AG, for short).” More precisely, we give an explicit description of subdirectly irreducible Almost Gautama algebras. As consequences, explicit description of the lattice of subvarieties of AG and the equational bases for all its subvarieties are given. It is also shown that the variety AG is a discriminator variety. Next, we consider logicizing AG; but the variety AG lacks an implication operation. We, therefore, introduce another variety of algebras called “Almost Gautama Heyting algebras” (AGH, for short) and show that the variety AGH is term-equivalent to that of AG. Next, a propositional logic, called AG (or AGH), is defined and shown to be algebraizable (in the sense of Blok and Pigozzi) with the variety AG, via AGH, as its equivalent algebraic semantics (up to term equivalence). All axiomatic extensions of the logic AG, corresponding to all the subvarieties of AG are given. They include the axiomatic extensions RDBLSt, RKLSt and G of the logic AG corresponding to the varieties RDBLSt, RKLSt, and G (of Gautama algebras), respectively. It is also deduced that none of the axiomatic extensions of AG has the Disjunction Property. Finally, We revisit the classical logic with strong negation CN and classical Nelson algebras CN introduced by Vakarelov in 1977 and improve his results by showing that CN is algebraizable with CN as its algebraic semantics and that the logics RKLSt, RKLStH, 3-valued Lukasivicz logic and the classical logic with strong negation are all equivalent.
Recently, Gautama algebras were defined and investigated as a common generalization of the variety RDBLSt of regular double Stone algebras and the variety RKLSt of regular Kleene Stone algebras, both of which are, in turn, generalizations of Boolean algebras. Those algebras were named in honor and memory of the two founders of Indian Logic–Akshapada Gautama and Medhatithi Gautama. The purpose of this paper is to define and investigate a generalization of Gautama algebras, called “Almost Gautama algebras (AG, for short).” More precisely, we give an explicit description of subdirectly irreducible Almost Gautama algebras. As consequences, explicit description of the lattice of subvarieties of AG and the equational bases for all its subvarieties are given. It is also shown that the variety AG is a discriminator variety. Next, we consider logicizing AG; but the variety AG lacks an implication operation. We, therefore, introduce another variety of algebras called “Almost Gautama Heyting algebras” (AGH, for short) and show that the variety AGH is term-equivalent to that of AG. Next, a propositional logic, called AG (or AGH), is defined and shown to be algebraizable (in the sense of Blok and Pigozzi) with the variety AG, via AGH, as its equivalent algebraic semantics (up to term equivalence). All axiomatic extensions of the logic AG, corresponding to all the subvarieties of AG are given. They include the axiomatic extensions RDBLSt, RKLSt and G of the logic AG corresponding to the varieties RDBLSt, RKLSt, and G (of Gautama algebras), respectively. It is also deduced that none of the axiomatic extensions of AG has the Disjunction Property. Finally, We revisit the classical logic with strong negation CN and classical Nelson algebras CN introduced by Vakarelov in 1977 and improve his results by showing that CN is algebraizable with CN as its algebraic semantics and that the logics RKLSt, RKLStH, 3-valued Lukasivicz logic and the classical logic with strong negation are all equivalent.
[1] M. Abad, J. M. Cornejo and J. P. Diaz Varela, The variety of semi-Heyting algebras satisfying the equation $(0 \to 1)^* \lor (0 \to 1 )^{**} \approx 1$, Rep. Math. Logic, 46 (2011), 75-90.
[2] M. Abad, J. M. Cornejo and J. P. Diaz Varela, The variety generated by semi-Heyting chains, Soft Comput, 15 (2011), 721-728.
[3] M. Abad, J. M. Cornejo and J. P. Diaz Varela, Semi-Heyting algebras term-equivalent to Godel algebras, Order, 30 (2013), 625-642.
[4] M. Abad and L. Monteiro, Free symmetric boolean algebras, Revista de la U.M.A., (1976), 207-215.
[5] M. E. Adams, H. P. Sankappanavar and J. Vaz de Carvalho, Regular double p-algebras, Mathematica Slovaca, 69(1) (2019), 15-34.
[6] M. E. Adams, H. P. Sankappanavar and J. Vaz de Carvalho, Varieties of regular pseudocomplemented De Morgan algebras, Order, 37(3) (2020), 529-557, https://doi.org/10.1007/s11083-019-09518-y.
[7] R. Balbes and P. Dwinger, Distributive Lattices, Missouri Press, (1974).
[8] A. Bialynicki-Birula and H. Rasiowa, On the representation of quasi-Boolean algebras, Bull. Acad. Polon. Sci. Cl. III, (1957), 259-261.
[9] W. J. Blok and D. Pigozzi, Algebraizable Logics, Mem. Amer. Math. Soc., No. 396, Providence, Rhode Island, (1989).
[10] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics 78, Springer-Verlag, New York, (1981). The free, corrected version (2012) is available online as a PDF file at http://www.thoralf.uwaterloo.ca/htdocs/ualg.html.
[11] S. Burris and H. Werner, Sheaf constructions and their elementary properties, Trans. Amer. Math Soc, 248 (1979), 269-309.
[12] J. M. Cornejo, M. Kinyon and H. P. Sankappanavar, Regular double p-algebras: A converse to a Katrinak's theorem, and applications, Mathematica Slovaka, (Accepted in 2022).
[13] J. M. Cornejo, L. F. Monteiro, H. P. Sankappanavar and I. D. Viglizzo, A note on chain-based semi-Heyting algebras, Math. Log. Quart, 66(4), (2020), 409-417
[14] J. M. Cornejo and H. P. Sankappanavar, Semi-Heyting algebras and identities of associative type, Bulletin of the Section of Logic, 48(2) (2019), 117-135.
[15] J. M. Cornejo and H. P. Sankappanavar, A logic for dually hemimorphic semi-Heyting algebras and its axiomatic extensions, Bulletin of the Section of Logic, 51(4) (2022), 555-645, https://doi.org/10.18778/0138-0680.2022.2391.
[16] J. M. Cornejo and H. P. Sankappanavar, On the Disjunction Property in Semi-Heyting and Heyting Algebras, (2022).
[17] J. M. Cornejo and H. P. Sankappanavar, Amalgamation Property in the Varieties of Gautama and Almost Gautama Algebras, (2023).
[18] J. M. Cornejo and I. Viglizzo, Semi-Nelson algebras, Order, 35 (2018), 23-45, DOI 10.1007/s11083-016-9416-x
[19] M. M. Fidel, An algebraic study of a propositional system of Nelson, Mathematical Logic, Proceedings of the First Brazilian Conference, Marcel Dekker, New York, (1978), 99-117.
[20] J. M. Font, Abstract Algebraic Logic: An Introductory Textbook, Vol. 60., Studies in Logic (London).
Mathematical Logic and Foundations. College Publications, London, (2016).
[21] G. Gratzer, Lattice Theory: First Concepts and Distributive Lattices, Freeman, San Francisco, (1971).
[22] G. Grtzer and H. Lakser, The structure of pseudocomplemented distributive lattices II: Congruence extension and amalgamation, Trans. Amer. Math. Soc, 156 (1971), 343-358.
[23] D. Hobby, Semi-De Morgan algebras, Studia Logica, 56 (1996), 150-183.
[24] J. A. Kalman, Lattices with involution, Trans. Amer. Math. Soc, 87 (1958), 485-491.
[25] T. Katrinak, The structure of distributive double p-algebras. Regularity and congruences, Algebra Universalis, 3 (1973), 238-246.
[26] A. A. Markov, Constructive logic (in Russian), Uspekhi Matematiceskih Nauk, 5 (1950), 187-188.
[27] W. McCune, Prover9 and Mace4, version 2009-11A, (http://www.cs.unm.edu/~mccune/prover9/).
[28] G. C. Moisil, Recherches sur lalgebre de la logique, Annales scienti ques de luniversite de Jassy, 22 (1935), 1-117.
[29] G. C. Moisil, Logique modale, Disquisitiones Mathematicae et Physica, 2 (1942), 3-98.
[30] G. C. Moisil, Essais Sur Les Logiques Non Chrysippiennes, Editions de lAcademie de la Republique Socialiste de Roumanie, Bucharest, (1972).
[31] A. Monteiro, Les algebres de Nelson semi-simple, Notas de Logica Matematica, Inst, de Mat, Universidad Nacional del Sur, Bahia Blanca, (1996).
[32] A. A. Monteiro, Sur les algebres de Heyting symetriques, Portugal. Math, 39(1-4) (1980), 1-237.
[33] A. A. Monteiro and L. Monteiro, Axiomes Independants Pour Les Algebres de Nelson, de Lukasiewicz Trivalentes, de De Morgan et de Kleene, In Unpublished papers, I, volume 40 of Notas Logica Matematica, page 13. Univ. Nac. del Sur, Bahia Blanca, (1996).
[34] D. Nelson, Constructible falsity, Journal of Symbolic Logic, 14 (1949), 16-26.
[35] C. Palma, Semi-De Morgan algebras, Ph.D. Thesis, (2004).
[36] C. Palma, The principal join property in demi-p-lattices, Mathematica Slovaca, 56(2) (2006), 199-212.
[37] C. Palma, and R. Santos, On the subdirectly irreducible semi-De Morgan algebras, Publ. Math. Debrecen, 49 (1996), 39-45.
[38] C. Palma and R. Santos, On the characterization of a subvariety of semi-De Morgan algebras, Bol. Soc. Mat. Mexicana (3), 12 (2006), 149-154.
[39] H. Rasiowa, N-lattices and constructive logic with strong negation, Fundamenta Mathematicae, 46 (1958), 61-80.
[40] H. Rasiowa, An Algebraic Approach to Non-classical Logics, Studies in Logic and the Foundations of Mathematics, Vol. 78, North-Holland Publishing Co., Amsterdam, (1974).
[41] P. Ribenboim, Characterization of the sup-complement in a distributive lattice with last element, Summa Brasil. Math, 2(4) (1949), 43-49.
[42] U. Rivieccio and M. Spinks, Quasi-Nelson algebras, Electronic Notes in Theoretical Computer Science, 344 (2019), 169-188.
[43] A. Romanowska, Subdirectly irreducible pseudocomplemented De Morgan algebras, Algebra Universalis, 12(1) (1981), 70-75.
[44] H. P. Sankappanavar, A characterization of principal congruences of De Morgan algebras and its applications, In: Mathematical Logic in Latin America, A.I. Arruda, R. Chuaqui and N.C.A. da Costa (editors), North- Holland, Amsterdam, (1980), 340-349.
[45] H. P. Sankappanavar, Heyting algebras with dual pseudocomplementation, Paci c J. Math., 117 (1985), 405-415.
[46] H. P. Sankappanavar, Pseudocomplemented Okham and De Morgan algebras, Math. Logic Quarterly, 32 (1986), 385-394.
[47] H. P. Sankappanavar, Semi-Heyting Algebras, Amer. Math. Soc. Abstracts, January 1987, Page 13, (1987).
[48] H. P. Sankappanavar, Heyting algebras with a dual lattice endomorphism, Math Logic Quarterly, 33 (1987), 565-573.
[49] H. P. Sankappanavar, Semi-De Morgan algebras, J. Symbolic. Logic, 52 (1987), 712-724.
[50] H. P. Sankappanavar, Principal congruences of pseudocomplemented De Morgan algebras, Math. Logic Quarterly, 33 (1987), 3-11.
[51] H. P. Sankappanavar, Pseudocomplemented and almost pseudocomplemented Ockham algebras: Principal congruences, Math. Logic Quarterly, 35 (1989), 229-236.
[52] H. P. Sankappanavar, Linked double weak Stone algebras, Math. Logic Quarterly, 35 (1989), 485-494.
[53] H. P. Sankappanavar, Demi-pseudocomplemented lattices: Principal congruences and subdirect irreducibility, Algebra Universalis, 27 (1990), 180-193.
[54] H. P. Sankappanavar, Principal congruences of double demi-p-lattices, Algebra Universalis, 27 (1990), 248-253.
[55] H. P. Sankappanavar, Varieties of demi-pseudocomplemented lattices, Math. Logic Quarterly, 37 (1991), 411-420.
[56] H. P. Sankappanavar, Principal congruences of demi-pseudocomplemented Ockham algebras and applications, Math. Logic Quarterly, 37 (1991), 489-494.
[57] H. P. Sankappanavar, Semi-Heyting algebras: An abstraction from Heyting algebras, In: Proceedings of the 9th \Dr. Antonio A. R. Monteiro" Congress (Spanish: Actas del IX Congresso Dr. Antonio A. R. Monteiro, held in BahIa Blanca, May 30-June 1, 2007), edited by M. Abad and I. Viglizzo (Universidad Nacional del Sur), (2008), 33-66.
[58] H. P. Sankappanavar, Expansions of semi-Heyting algebras I: Discriminator varieties, Studia Logica, 98(1-2) (2011), 27-81.
[59] H. P. Sankappanavar, Dually quasi-De Morgan Stone semi-Heyting algebras I: Regularity, Categories, General Algebraic Structures and Applications, 2(1) (2014), 47-64.
[60] H. P. Sankappanavar, Dually quasi-De Morgan Stone semi-Heyting algebras II: Regularity, Categories, General Algebraic Structures and Applications, 2(1) (2014), 65-82.
[61] H. P. Sankappanavar, A note on regular De Morgan Stone semi-Heyting algebras, Demonstracio mathematica, 49(3) (2016), 252-265.
[62] H. P. Sankappanavar, JI-distributive dually quasi-De Morgan semi-Heyting and Heyting algebras, Sci. Math. Jpn, 82(3) (2019), 245-271.
[63] H. P. Sankappanavar, De Morgan semi-Heyting and Heyting algebras, New Trends in Algebra and Combinatorics, Proceeding of the 3rd International Congress in Algebra and Combinatorics (ICAC2017), 25-28, August 2017, Hong Kong, China, (2020), https://doi.org/10.1142/11694.
[64] H. P. Sankappanavar, (Chapter) A few historical glimpses into the interplay between algebra and logic and investigations into Gautama algebras, In: Handbook of Logical Thought in India, S. Sarukkai, M. K. Chakraborty (eds.), Springer, New Delhi, (2022), 979-1052.
[65] H. P. Sankappanavar and J. Vaz de Carvalho, Congruence properties of pseudocomplemented De Morgan algebras, Mathematical logic quarterly, 60(6) (2014), 425-436.
[66] T. Skolem, Untersuchungen uber die Axiome des Klassenkalkuls und uber Produktations- und Summationsprobleme, welche gewisse Klassen von Aussagen betre en (as reprinted in 1970), (1919), 67-101.
[67] D. Vakarelov, Notes on N-lattices and constructive logic with strong negation, Stud Logica, 36 (1977), 109-125.
[68] J. Varlet, A regular variety of type (2, 2, I, 1, 0, 0), Algebra Universalis, 2 (1972), 218-223.
[69] I. Viglizzo, A Lgebras De Nelson, Instituto De Matematica De Baha Blanca, Universidad Nacional del Sur, 1999. Magister dissertation in Mathematics, Universidad Nacional del Sur, Baha Blanca available at https://sites.google.com/site/viglizzo/viglizzo99nelson, (1999).
[70] J. Von Plato, In the shadows of the Lowenheim-Skolem theorem: Early combinatorial analysis of mathematical proofs, The Bulletin of Symbolic Logic, 13(2) (2007), 189-225.
[71] N. N. Vorobev, Constructive propositional calculus with strong negation (in Russian), Doklady Akademii Nauk SSSR, 85 (1952), 456-468.
[72] H. Werner, Discriminator Algebras, Studien zur Algebra und ihre Anwendungen, Band 6, Academie{Verlag, Berlin, (1978).