Fabrication, Characterization and Osteoblast Response of Cobalt-Based Alloy/Nano Bioactive Glass Composites
محورهای موضوعی : Finite Element ModelingMohammad Reza Bafandeh 1 , Raziyeh Gharahkhani 2 , Mohammad Hossein Fathi 3
1 - Department of Materials Science and Engineering, Faculty of Engineering, University of Kashan, Kashan, I.R. Iran
2 - Department of Materials Engineering, Isfahan University of Technology (IUT), Isfahan 84156-83111, Iran
3 - Department of Materials Engineering, Isfahan University of Technology (IUT), Isfahan 84156-83111, Iran
کلید واژه: Sintering, Biomaterials, Nano bioactive glass Response Surface, Osteoblast response,
چکیده مقاله :
IIn this work, cobalt-based alloy/ nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. The scanning electron microscopy images of two- step sintered composites revealed a relatively dense microstructure the density of which decreased with the increase in the NBG amount. Microstructural analysis as well as energy dispersive X-ray analysis (EDX) revealed that after 1 week of immersion in SBF, a small amount of calcium phosphate phases precipitates on the surface of the composite samples. After 2 weeks of immersion, a considerable amount of cauliflower-like shaped precipitations was observed on the surface of composites. The observed peaks in the Fourier transform infrared (FTIR) spectroscopy of the composite samples in SBF immersed for 4 weeks were assigned to hydroxyapatite. Therefore, a hydroxyapatite layer has been possibly formed on the surface of the composite samples during immersion in SBF. Cell culture results indicate that unlike the Co-based alloy, the Co-based/NBG composites are bioactive and bone cells could be vivid and grow on their surfaces, promising their possibility for implant applications.
[1] C. Garcia, S. Cere, A. Duran, "Bioactive coatings prepared by sol-gel on stainless steel 316L", J. Non-Cryst. Solids, Vol. 348, 2004, pp. 218-224.
[2] G. Pezzotti , K. Yamamoto, "Artificial hip joints: The biomaterials challenge", J. Mech. Behav. Biomed. Mater., Vol. 31, 2014, pp. 3-20.
[3] M. Haeri, J. L. Gilbert, "Study of cellular dynamics on polarized Co-Cr-Mo alloy using time-lapse live-cell imaging", Acta
Biomater., Vol. 9, No. 11, 2013, pp. 9220-9228.
[4] J. Fornell , E. Pellicer, N. V. Steenberge, S. González, A. Gebert, S. Surinach, M. D. Baro, J. Sort, "Improved plasticity and corrosion behavior in Ti-Zr-Cu-Pd metallic glass with minor additions of Nb: An alloy composition intended for biomedical applications", Mater. Sci. Eng., A, Vol. 559, 2013, pp. 159-164.
[5] N. Letaief , A. Lucas-Girot, H. Oudadesse, P. Meleard, T. Pott, J. Jelassi, R. Dorbez-Sridi, "Effect of aging temperature on the structure, pore morphology and bioactivity of new sol-gel synthesized bioglass", J. Non-Cryst. Solids, Vol. 402, 2014, pp. 194-199.
[6] M. Monsalve, H. Ageorges, E. Lopez, F. Vargas, F. Bolivar, "Bioactivity and mechanical properties of plasma-sprayed coatings of bioglass powders", Surf. Coat. Techol., Vol. 220, 2013, pp. 60-66.
[7] L. L. Hench, N. Roki, M.B. Fenn, "Bioactive glasses: Importance of structure and properties in bone regeneration", J. Mol. Struc.-Theochem., Vol. 1073, 2014, pp. 24-30.
[8] P. Galliano, J. J. De Damborenea, M. J. Pascual, A. Duran, "Sol-gel coatings on 316L steel for clinical applications", J. Sol-Gel Sci. Technol., Vol. 13, 1998, pp. 723-727.
[9] W. Pon-On, N. Charoenphandhu, J. Teerapornpuntakit, J. Thongbunchoo, N. Krishnamra, I.M. Tang, "Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: A bone tissue engineering applications", Mater. Sci. Eng., C, Vol. 38, 2014, pp. 63-72.
[10] M. M. Sebdani , M. H. Fathi, "Novel hydroxyapatite-forsterite-bioglass nanocomposite coatings with improved mechanical properties", J. Alloys Compd., Vol. 509, No. 5, 2011, pp. 2273-2276.
[11] J. P. Nayak , J. Bera, "Effect of sintering temperature on mechanical behavior and bioactivity of sol-gel synthesized bioglass-ceramics using rice husk ash as a silica source", Appl. Surf. Sci., Vol. 257, No. 2, 2010, pp. 458-462.
[12] S. Spriano, E. Verne, M. G. Faga, S. Bugliosi, G. Maina, "Surface treatment on an implant cobalt alloy for high biocompatibility and wear resistance", Wear, Vol. 259, 2005, pp. 919-925.
[13] J.I. Onate, M. Comin, I. Braceras, A. Garcia, J. L. Viviente, M. Brizuela, N. Garagorri, J. L. Peris, J. I. Alava, "Wear reduction effect on ultra-high-molecular-weight polyethylene by application of hard coatings and ion implantation on cobalt chromium alloy, as measured in a knee wear simulation machine", Surf. Coat. Technol., Vol. 142, 2002, pp. 1056-1062.
[14] D. Sheeja, B. K. Tay, S. P. Lau, L. N. Nung, "Tribological characterization of diamond-like carbon coatings on Co-Cr-Mo alloy for orthopaedic applications", Surf. Coat. Technol., Vol. 142, 2001, pp. 410-416.
[15] M. N. Rahaman, B. S. Bal, W. Huang, "Review: Emerging developments in the use of bioactive glasses for treating infected prosthetic joints", Mater. Sci. Eng., C, Vol. 41, 2014, pp. 224-231.
[16] W. Gong, Z. Huang, Y. Dong, Y. Gan, S. Li, X. Gao, X. Chen, "Ionic extraction of a novel nano-sized bioactive glass enhances differentiation and mineralization of human dental pulp cells", J. Endod., Vol. 40, No. 1, 2014, pp. 83-88.
[17] Z. Ma, H. Ji, X. Hu, Y. Teng, G. Zhao, L. Mo, X. Zhao, W. Chen, J. Qiu, M. Zhang, "Investigation of bioactivity and cell effects of nano-porous sol-gel derived bioactive glass film", Appl. Surf. Sci., Vol. 284, 2013, pp. 738-744.
[18] N. Nabian, M. Jahanshahi, S. M. Rabiee, "Synthesis of nano-bioactive glass-ceramic powders and its in vitro bioactivity study in bovine serum albumin protein", J. Mol. Struct., Vol. 998, No. 1, 2011, pp. 37-41.
[19] M. H. Fathi, A. Doostmohammadi, "Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant", J. Mater. Process. Technol., Vol. 209, 2009, pp. 1385-1391.
[20] I. W. Chen, X. H. Wang, "Sintering dense nanocrystalline ceramics without final-stage grain growth", Nature, Vol. 404, 2000, pp. 168-171.
[21] T. Kokubo, Z. Huang, T. Hayashi, S. Sakka, T. Kitsugi, T. Yamamuro, "Ca P-rich layer formed on high-strength bioactive glass-ceramic", J. Biomed. Mater. Res., Vol. 24, 1990, pp. 331-343.
[22] T. Mosmann, "Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays", J. Immunol. Methods, Vol. 65, 1983, pp. 55-63.
[23] M. Ferrari, M.C. Fornasiero and A.M. Isetta, "MTT colorimetric assay for testing macrophage cytotoxic activity in vitro", J. Immunol. Methods, Vol. 131, 1990, pp. 165-172.
[24] L. H. Dai, Z. Ling, Y. L. Bai, "Size-dependent inelastic behavior of particle reinforced Metal-matrix composites", Compos. Sci. Technol., Vol. 61, 2001, pp. 1057-1063.
[25] C. Ohtsuki, T., Kokubo, T. Yamamuro, "Compositional dependence of bioactivity of glasses in the system CaO-SiO2-Al2O3: its in vitro evaluation", J. Mater. Sci. - Mater. Med., Vol. 3, 1992, pp. 119-125.
[26] S. Kashyap, K. Griep, J. A. Nychka, "Crystallization kinetics, mineralization and crack propagation in partially crystallized bioactive glass 45S5", Mater. Sci. Eng., C, Vol. 31, No. 4, 2011, pp. 762-769.
[27] Z. Zhou, J. Ruan, Z. Zhou, X. Shen, "Bioactivity of bioresorbable composite based on bioactive glass and poly-l-lactide", Trans. Nonferrous Met. Soc. China, Vol. 17, 2007, pp. 394-399.
[28] E.J. Lee, "Fluoridated apatite coatings on titanium", Biomaterials, Vol. 26, 2005, pp.
3843-3851.
[29] W. Weng, J. L. Baptista, "Sol-Gel derived porous hydroxyapatite coatings", J. Mater. Sci., Vol. 9, 1998, pp. 159-163.
[30] V. Cannillo, F. Pierli, I. Ronchetti, C. Siligardi, D. Zaffe, "Chemical durability and microstructural analysis of glasses soaked in water and in biological fluids", Ceram. Int., Vol. 35, 2009, pp. 2853-2869.
[31] H. W. Kim , E. J. Lee , I. K. Jun , H. E. Kim, "On the feasibility of phosphate glass and hydroxyapatite coating on titanium", J. Biomed. Mater. Res., A., Vol. 75, No. 3, 2005, pp. 656-667.
[32] D.M. Liu, "Bioactive glass-ceramic: formation, characterization and bioactivity", Mater. Chem. Phys., Vol. 36, 1994, pp. 294-303.
[33] H. H. Beherei, K. R. Mohamed, G. T. El-Bassyouni, "Fabrication and characterization of bioactive glass (45S5)/titania biocomposites", Ceram. Int., Vol. 35, 2009, pp. 1991-1997.
[34] J. M. Oliveira, R. N. Correia, M. H. Fernandes, "Effects of Si speciation on the in vitro bioactivity of glasses", Biomaterials, Vol. 23, 2002, pp. 371-379.
[35] M. Mneimne, R. G. Hill, A. J. Bushby, D. S. Brauer, "High phosphate content significantly increases apatite formation of fluoride containing bioactive glasses", Acta Biomater., Vol. 7, No. 4, 2011, pp. 1827-1834.
[36] A. Saboori, M. Rabiee, F. Moztarzadeh, M. Sheikhi, M. Tahriri, M. Karimi, "Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO bioglass", Mater. Sci. Eng., C, Vol. 29, 2009, pp. 335-340.