الگوهای همدیدی منجر به وقوع فرینهای دمایی بالا در دوره سرد ساحل جنوبی ایران
محورهای موضوعی : اقلیم شناسیسودابه سنادی زاده 1 , حسن لشکری 2 , سید جمال الدین دریاباری 3
1 - دانشجوی دکتری تخصصی آب و هواشناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استاد گروه تخصصی جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران
3 - دانشیار گروه جغرافیا، دانشگاه آزاد اسلامی ، واحد تهران شمال، تهران ، ایران
کلید واژه: سواحل جنوبی ایران, دمای فرین, الگوهای همدیدی, کم فشار سودان, واچرخند عربستان,
چکیده مقاله :
دماهای فرین بدلیل ایجاد شرایط دمایی نامتعارف حتی در دوره زمانی کوتاه سبب اختلال در زندگی روز مره ساکنان و بسیاری از فعالیتهای اجتماعی میشود. هدف این تحقیق استخراج و معرفی الگوهای همدیدی منجر به ایجاد دماهای فرین در 33 سال گذشته در شهرهای سواحل جنوبی میباشد. برای دستیابی به این هدف با استفاده از شاخص نمره استاندارد Z و سایر معیارهای انتخابی نمونههای فرین دمایی برای تمام ایستگاههای انتخاب شده استخراج شد. براساس معیارهای انتخاب شده 90 نمونه فرین در دروه آماری 33 ساله استخراج شد. نتایج این تحقیق نشان داد که 7 عامل و 14 الگو پرتکرارترین الگوهای همدیدی هستند که عامل اصلی ایجاد دماهای فرین در دوره سرد سال در شهرهای جنوبی ایران میباشند. در این میان از الگوهای عامل اول الگوی کم فشار سودان- ترکمنستان و از میان سامانههای مؤثر در ایجاد فرینهای دمایی بالا، کم فشار سودان بیشترین نقش را در ساختار الگوهای همدیدی داشته است. در این الگو سامانه کم فشار سودان با گسترشی شمال شرق سو با سامانه کم فشاری که در ساحل شرقی دریاچه مازندران استقرار دارد ادغام شده با فرارفت هوای گرم حارهای سبب افزایش نامتعارف دما در ایستگاههای ساحلی میشود. هسته گرمایی در این الگو بر روی سودان و عربستان قرار دارد. در ترازهای لایه مرزی تا لایه میانی تروپوسفر در تمام الگوها واچرخند عربستان با استقرار بر روی منطقه و ایجاد پایداری دینامیکی و گرمایش بیدررو حاصل از آن سبب ماندگاری و تشدید دمای موج بر روی منطقه بوده است
The occurrence of heatwaves, even in short time periods, can disrupt daily life and many social activities for residents. This phenomenon, when it persists for longer durations, may cause environmental and agricultural damage. The objective of this research is to extract and introduce synoptic patterns that lead to the creation of heatwaves in the southern coastal cities over the past 33 years. To achieve this goal, using the Z-score index and other selected criteria, heatwave samples were extracted for all selected stations. Based on the selected criteria, 90 heatwave samples were extracted for the 33-year statistical period. Then, using the factor analysis method and visual inspection with 1000 hPa weather data, dominant and frequent synoptic patterns were extracted. The results of this research showed that seven factors and 14 frequent patterns are the most dominant synoptic patterns that create heatwaves during the cold season in southern Iranian cities. Among these patterns, the first factor of the Sudan-Turkmenistan low-pressure pattern and, among the effective systems in creating high heatwave temperatures, the Sudan low-pressure system had the most significant role in the structure of synoptic patterns. In this pattern, the Sudan low-pressure system is combined with a northeast expansion towards the South and the warm air movement of the Hadley cell, causing an abnormal rise in temperatures at coastal stations. The core heat of this pattern is located over Sudan and Saudi Arabia. In the boundary layer to the middle troposphere, the Arabian trough rotates over the region, creating dynamic
1- اسدی، اشرف (1400): بررسی همدید رویدادهای حدی گرم ایران در ارتباط با تغییر اقلیم بر پایه الگوهای فرا رفت دما. پژوهشهای تغییرات آب و هوایی، دوره دوم، شماره ششم، صص 46-31.
2- اسدی، اشرف، مسعودیان، سید ابوالفضل (1393): بررسی همدید گرماهای فرین ایران بر پایه الگوهای ضخامت جو، پژوهشهای دانش زمین، دوره پنجم، شماره یکم، صص 75-63.
3- برون، اشرف. ظهوریان پردل، منیژه. لشکری، حسن. شکیبا، علیرضا، محمدی، زینب (1398): تحلیل همدیدی نقش پرفشار عربستان در امواج گرم استان خوزستان، هواشناسی و علوم جو، دوره یکم، شماره دوم، صص 67-55.
4- جمالی زاده، ناهید. ظهوریان پردل، منیژه. لشکری، حسن. شکیبا، علیرضا، محمدی، زینب (1398): تحلیل همدیدی و ساختار دینامیکی الگوهای تابستانه استان خوزستان، جغرافیای طبیعی، دوره 12، شماره چهاردهم، صص 17-29.
5- خسروی، محمود. سلیقه، محمد. صباغی، بهروز (1390): تأثیر آنومالیهای دمای سطح دریای عمان بر بارندگی فصول پاییز و زمستان سواحل جنوب شرقی ایران، نشریه علمی جغرافیا و برنامهریزی، دوره سی و هفتم، شماره شانزدهم، صص 81-59.
6- عسکری، احمد (1371): تغییر اقلیم، مجله نیوار، شماره سیزدهم.
7- علیزاده، امین (1373): گرم شدن جهانی و پیامدهای هیدرولوژیک، مجله نیوار، شماره بیست و دوم.
8- علیجانی، بهلول. روشنی، احمد. پرک، فاطمه. حیدری، روح ا... (1391): روند تغییرپذیری فرینهای دما با استفاده از شاخصهای تغییر اقلیم در ایران، جغرافیا و مخاطرات محیطی، دوره یکم، شماره دوم، صص 28-17.
9- لشکری، حسن. محمدی، زینب. مرادی، محسن (1401): تحلیل ساختاری و علت تشکیل هسته مرکزی پرفشار سیبری در محدوده دریاچههای بایکال و بال خاش. مخاطرات محیط طبیعی، صص 1-1
10- لشکری، حسن. یارمرادی، زهرا (1393): تحلیل همدیدی موقعیت استقرار پرفشار سیبری و مسیرهای ورودی آن به کشور ایران در فصل سرد. پژوهشهای جغرافیای طبیعی، دوره دوم، شماره چهل و ششم، صص 218-199.
11- لشکری، حسن. متکان، علیاکبر. آزادی، مجید. محمدی، زینب (1397): تحلیل الگوهای همدیدی منجر به بارشهای زودرس جنوب و جنوب غرب ایران طی دوره آماری (2015-1979)، نشریه علمی جغرافیا و برنامهریزی، دوره بیست و دوم، شماره شصت و چهارم، صص 266-247.
12- مسعودیان، سید ابوالفضل، دارند، محمد (1390): تحلیل همدید سرماهای فرین ایران، فصلنامه جغرافیا و توسعه، دوره 9، شماره بیست و دوم، صص 185-165.
13- Arias, P. Bellouin, N. Coppola, E. Jones, C. Krinner, G. Marotzke, J. Naik, V. Plattner, G.K. Rojas, M. Sillmann, J. Et Al. Climate Change (2021): The Physical Science Basis; Contribution Of Working Group I To The Sixth Assessment Report Of The Intergovernmental Panel On Climate Change; Technical Summary; IPCC: Geneva, Switzerland, Pp.113-119.
14- Bodansky, D. (2016): The Paris Climate Change Agreement: A New Hope? American Journal Of International Law, Vol.110, No. 2, Pp. 288-319.
15- Chen, Y. Zhou, B. Zhai, P. & Moufouma‐Okia, W. (2019): Half‐A‐Degree Matters For Reducing And Delaying Global Land Exposure To Combined Daytime‐Nighttime Hot Extremes. Earth's Future, Vol. 7, No.8, Pp. 953-966.
16- Easterling, D. R. Evans, J. L. Groisman, P. Y. Karl, T. R. Kunkel, K. E. & Ambenje, P. (2000): Observed Variability And Trends In Extreme Climate Events: A Brief Review. Bulletin Of The American Meteorological Society, Vol. 81 No.3, Pp. 417-426.
17- Field, C. B. Barros, V. Stocker, T. F. & Dahe, Q. (2012): Managing The Risks Of Extreme Events And Disasters To Advance Climate Change Adaptation: Special Report Of The Intergovernmental Panel On Climate Change. Cambridge University Press.
18- Khazalah, M. & Gopalan, B. (2017): Climate Change—Causes, Impacts, Mitigation: A Review. In Global Civil Engineering Conference, Pp. 715-721
19- Kniel KE, (2017):Spanninger P. Preharvest Food Safety Under The Influence Of A Changing Climate. Microbiol Spectr, Vol. 5 No.2, Pp.0015-2016.
20- Lashkari, H. & Mohammadi, Z. (2015): The Effect Of The Location Of The Arabian Subtropical High Pressure On The Precipitation Systems In The South And Southwest Of Iran. Researches Of Natural Geography, Vol.47, No.1, Pp. 73-90.
21- Lolis, C. J. Kotsias, G. & Farmakidis, D. (2022): A 40-Year Climatology Of Air Temperature Extremes In The Southern Balkans Based On The ERA5 Database. Theoretical And Applied Climatology, Pp 1-23.
22- Luterbacher, J. Dietrich, D. Xoplaki, E. Grosjean, M. & Wanner, H. (2004):European Seasonal And Annual Temperature Variability, Trends, And Extremes Since 1500. Science,Vol, 303 No.5663, Pp 1499-1503.
23- Masson-Delmotte, V. Zhai, P. Pirani, A. Connors, S. L. Péan, C. Berger, S. ... & Zhou, B. (2021): Climate Change 2021: The Physical Science Basis. Contribution Of Working Group I To The Sixth Assessment Report Of The Intergovernmental Panel On Climate Change, 2.
24- Mateus, C. & Potito, A. (2022): Long-Term Trends In Daily Extreme Air Temperature Indices In Ireland From 1885-2018. Weather And Climate Extremes, 100464.
25- Mohammadi, Z. Lashkari, H. & Mohammadi, M. S. (2021): Synoptic Analysis And Core Situations Of Arabian Anticyclone In Shortest Period Precipitation In The South And Southwest Of Iran. Arabian Journal Of Geosciences,Vol, 14, No.12,Pp 1-18.
26- Mouhamed, L. Traore, S. B. Alhassane, A. & Sarr, B. (2013): Evolution Of Some Observed Climate Extremes In The West African Sahel. Weather And Climate Extremes, No.1, Pp19-25.
27- New, M. Hewitson, B. Stephenson, D. B. Tsiga, A. Kruger, A. Manhique, A. ... & Lajoie, R. (2006): Evidence Of Trends In Daily Climate Extremes Over Southern And West Africa. Journal Of Geophysical Research: Atmospheres,Vol, 111 No.D14.
28- Pop-Jordanova N, Grigorova E. (2015): Influence Of Climate Changes On Health (Review). Pril (Makedon Akad Nauk Umet Odd Med Nauki). Vol. 36, No.3,Pp119–25.
29- Räisänen, J. (2021): Effect Of Atmospheric Circulation On Surface Air Temperature Trends In Years 1979–2018. Climate Dynamics, 56(7), 2303-2320.
30- Schiermeier, Q. (2018). Droughts, Heatwaves And Floods: How To Tell When Climate Change Is To Blame. Nature, 560(7717), 20-23.
31- Shan, Y. Ying, H. & Bao, Y. (2022). Changes In Extreme Temperature Events And Their Contribution To Mean Temperature Changes During Historical And Future Periods Over Mainland China. Atmosphere, 13(7), 1127.
32- UNFCC. (2011, March). Fact Sheet: Climate Change Science-The Status Of Climate Change Science Today. In United Nations Framework Convention On Climate Change.
33- Vanhala, L. & Hestbaek, C. (2016). Framing Climate Change Loss And Damage In UNFCCC Negotiations. Global Environmental Politics, 16(4), 111-129.
34- WHO: Climate Change And Health [Https://Www.Who.Int/News-Room/ Fact-Sheets/Detail/Climate-Change-And-Health]. Accessed 15 Apr 2020.
35- WHO: Ten Threats To Global Health In 2019 [Https://Www.Who.Int/ Emergencies/Ten-Threats-To-Global-Health-In-2019]. Accessed 15 Apr 2020.
36- Zaveri, E. Russ, J. & Damania, R (2020): Rainfall Anomalies Are A Significant Driver Of Cropland Expansion. Proceedings Of The National Academy Of Sciences, Vol. 117, No. 19, Pp.10225-10233.
_||_