عوارض ژئومورفیک ناشی از زلزلۀ آبان ماه 1396 سرپل ذهاب - ازگله
محورهای موضوعی : ژئو مورفولوژی
1 - دانشجوی دکتری ژئومورفولوژی ، دانشکده ادبیات و علوم انسانی، دانشگاه رازی، کرمانشاه،ایران
2 - دانشیار ژئومورفولوژی، دانشکده ادبیات و علوم انسانی، دانشگاه رازی، کرمانشاه،ایران
کلید واژه: زلزله, ژئومورفولوژی, زمین ریخت, سرپل ذهاب - ازگله,
چکیده مقاله :
زلزلۀ 3/7 ریشتری آبان ماه 1396سرپل ذهاب علاوه بر تلفات جانی و مالی که در برداشت، عوارض ژئومورفیک زیادی بر جای گذاشت. در این تحقیق سعی بر این است که عوارض ایجاد شده را شناسایی و حجم این تغییرات ارزیابی شود. ابتدا با تکیه بر توپوگرافی، محدودۀ مورد مطالعه به دو بخش کوهستان و دشت تقسیم شد و سپس عوارض ژئومورفیک ناشی زلزله با استفاده از عکسهای هوایی و تصاویر ماهوارهای و بازدیدهای میدانی، شناسایی و مورد بررسی قرار گرفتند. سپس نقشۀ سازمان زمین-شناسی و اکتشافات معدنی کشور با استفاده از نرم افزار ( (ARC GIS رقومی شد و نقشه شیب نیز از روی مدل رقومی ارتفاعی در محیط نرم افزار (ARC GIS) تهیه شد. از این دادهها، برای نمایش بهتر تأثیر گسلها، جنس زمین، تشخیص سازندها، ناپایداریهای دامنهای و علتیابی عوارض ژئومورفیک ناشی از زلزله استفاده شد. نتایج نشان داد که وجود لایههای مقاوم آهک آسماری بر روی سازندهای ماسه سنگی آغاجاری، مارنی و سازند گچساران و سستی و فرسایشپذیری این سازندها موجب عوارض ژئومورفولوژیک زیاد ناشی از زلزله مانند ناپایداریهای دامنهای (زمینلغزش، ریزشهای سنگی، جریانهای واریزهای) گسیختگی، روانگرایی، نوسانات سطح آبهای زیرزمینی شده است. علاوه برشناسایی عوارض ژئومورفولوژیک ناشی زلزله، موقعیت و محل آنها در ارتباط با سایر عوامل زمینشناختی به نقشه درآورده شد و نقش اثرات ژئومورفولوژیک در ایجاد خطرات ثانویه و مقایسۀ این اثرات در دو واحد توپوگرافی کوهستان و دشت بررسی شد.
The 7/3 Richter earthquake of November 2016 in Sarpol Zahab, in addition to the loss of life and property, left many geomorphic effects. In this research, an attempt is made to identify the complications and evaluate the volume of these changes. First, based on the topography, the study area was divided into two parts: mountains and plains, and then the geomorphic effects caused by the earthquake were identified and investigated using aerial photos and satellite images and field visits. Then, the map of the Geological and Mineral Exploration Organization of the country was digitized using the ARC GIS software, and the slope map was prepared from the digital elevation model in the ARC GIS software. These data were used to better display the effect of faults, terrain, formations, domain instabilities and the cause of geomorphic effects caused by earthquakes. The results showed that the presence of resistant layers of Asmari limestone on the Aghajari, Marni and Gachsaran sandstone formations and the weakness and erodibility of these formations cause many geomorphological effects caused by earthquakes such as slope instabilities (Landslides, rockfalls, Deposit flows), ruptures, liquefaction, fluctuations of the underground water level. In addition to the identification of geomorphological effects caused by earthquakes, their location and location in relation to other geological factors were mapped and the role of geomorphological effects in creating secondary hazards and the comparison of these effects in two topographical units of mountains and plains were investigated.
1- آمبرسیز، ن.ن و ملویل چ. (1370): تاریخ زمین لرزههای ایران، انتشارات آگاه، ترجمه ابوالحسن زاده.
2- اسلامی، آرش، محمودی کوهی، علی، تقابنی، مسعود، کمیزی، ابوالفضل، گزارش مقدماتی زلزلۀ 21 آبان ماه،1396 کرمانشاه.
3- زارع، مهدی، حق شناس ابراهیم، تاجیک، وحید، معماریان، پرهام، رخشنده، معصومه، مبین، پریسا، گزارش پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله. دی ماه (1396(.
4- سلامت، مونا. معماریان، حسین. زارع، مهدی، (1389): بررسی تغییرات سطح آبهای زیرزمینی در اثر زمین لرزه با نگرشی بر زمین لرزه زرند.
5- فاطمی عقدا، سیدمحمود. مهدوی فر، محمدرضا. باقری، وحید، (1392): پهنه بندی زمین لغزشهای سرعین ناشی از زلزله 10اسفند 1375 با استفاده از روش کیفی.
6- کرمی، فریبا. بیاتی خطیبی، مریم. ملکی، شهرام (1396): بررسی مخاطرات ناشی از زلزله اهر ورزقان در حوضه سرندچای و پیرامون آن.
7- کوک، آریو؛ دورکمپ، یووجی، (1378): ژئومورفولوژی و مدیریت محیط، جلد 2، ترجمه شاپور گودرزی نژاد، تهران، سمت.
8- گزارش فنی- تحلیلی، شرکت آب منطقهای کرمانشاه از وضعیت آب استان کرمانشاه پس از وقوع زلزله 21 آبانماه (1396).
9- Cui, P. Zhuang, JQ. Chen, XZ. Et Al. (2010): Characteristics And Countermeasures Of Debris Flow In Wenchuan Area After The Earthquake. Journal.
10- Di, B., Zeng, H., Zhang, M., Ustin, S, L., Tang, Y., Wang, Z., Chen, N., Zhang, B., (2010): Quantifying The Spatial Distribution Of Soil Mass Wasting Prosses After The 2008 Earthquake In Wenchuan, China, Remote Sensing Of Environment, 114: 761-771.
11- Gallousi, C., & Koukouvelas, I.K., (2007): Quantifying Geomorphic Evolution Of Earthquake-Triggered Landslides And Their Relation To Active Normal Faults, An Example From The Gulf Of Corinth, Greece. Tectonophysics, 440, 85–104.
12- Geist, E. L., Titov, V. V. And Synolakis, C. E., (2006): Tsunami: Wave Of Change”, Scientific American, 56-63.
13- Hartman, J. And Jason, L., (2006): “The Influence Of Seism Tectonics On Precursory Changes In Groundwater Composition For The 1995 Kobe Earthquake, Japan”, Hydrogeology Journal, No.14: Pp1307-1318.
14- Kamp, U., Growley, B.J., Khattak, G.A., &Owen, L.A., (2008): GIS-Based Landslide Susceptibility Mapping For The 2005Kashmir Earthquake Region, Geomorphology, 101, 631–642.
15- Keefer D. K.," Landslides Caused By Earthquakes", Bulletin Of The Geological Society Of America (1984): 16-Keller E. A., Pinter, N.; Active Tectonics: Earthquakes, Uplift And Landscape; Prentice Hall, (2007): Landslides In A Mountainous Watershed Using Logistic Regression, Geomorphology, 89, 335–347.
17- Luzi, L., & Pergalani, F., (2000): A Correlation Between Slope Failures And Accelerometric Parameters: The 26 September 1997Earthquake (Umbria Marche, Italy), Soil Dynamics And Earthquake Engineering, 20, 301-313.
18- Marano, K.D., Wald, D.J. Allen, T.I., (2010): Global Earthquake Casualties Due To Secondary Effects: A Quantitative Analysis ForImproving Rapid Loss Analyses, Nat. Hazards, 52:319-328.
19- PNSN (Pacific Northwest Seismic Network), (2001): Surface Rupture.
(Http://Pnsn.Org/Outreach/Earthquakehazards/Surface-Rupture).
20- Ritz. J.F., Nazari. H., Balescu. S., Lamothe. M., Salamati. R., Ghassemi. A., Shafei. A., Ghorashi. M., Saidi. A., (2012): Paleo Earthquakes Of The Past 30,000 Years Along The North Tehran Fault (Iran), Journal Of Geophysical Research, Vol: 117, P: B06305.
21- Sanwei H., Peng P., Lan D., Haijun W., Jiping L. (2012): Application Of Kernel Based Fisher Discriminant Analysis Is To Map Landslide Susceptibility In The Qinggan River Delta, Three Gorges, China, Geomorphology 171, 30–41.
22- Suchita Shrestha1 & Tae-Seob Kang (2017): Assessment Of Seismically-Induced Landslide Susceptibility Assessment Of Seismically-Induced Landslide Susceptibility.
23- Sun Xiaolong, Liu Y Aowei And Ren Hongwei. Influence Of The (2011): Mw9. 0 Japan Earthquake On Groundwater Levels In Chinese Mainland.
Doi:10.3724/SP.J.1246.2011.0007.
24- Synolakis, C. E., (2003): Tsunami And Seiche, CRC Press, Boca Raton, Florida, USA Vernant, Ph., Nilforoushan, F., Hatzfeld, D., Abbasi, M. R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A.
25- Wang. G, Huang,., Lourenço, S. D.N., Kamai, T., (2014): A Large Landslide Triggered By The 2008 Wenchuan (M8.0)Earthquake In Donghekou Area: Phenomena And Mechanisms, Engineering Geology, 182,148-15.
26- Wen-Chi, W., Naoji, K., Norio, M., Yuichi, K., Ching-Wee, L., Chjeng, S., And Youe-Ping, L., (2004): Effects Of Seismic Ground Motion And Geological Setting On The Coseismic Groundwater Level Changes Caused By The 1999 Chi-Chi Earthquake, Taiwan”, Earth Planets Space, No.56: Pp873-880.
27- Xu, Ch., Xu, X., Yu, G., (2012): Earthquake Triggered Landslide Hazard Mapping And Validation Related With The 2010 Port-Au Prince, Haiti Earthquake, Disaster Advances, 5 (4):1297-1304.
_||_