برنامهریزی محیطزیستی تثبیت ماسههای روان در خطوط و تاسیسات ریلی در محور سیستان و بلوچستان
محورهای موضوعی : مدیریت بحرانیحیی سهرابی 1 , احمد نوحه گر 2
1 - دانشجو دکتری، گروه مهندسی محیطزیست، پردیس بینالمللی ارس، دانشگاه تهران، جلفا، ایران
2 - استاد گروه برنامهریزی، مدیریت و آموزش محیطزیست، دانشکده محیطزیست، دانشگاه تهران، تهران، ایران
کلید واژه: نظریه داده بنیاد, مدلسازی معادلات ساختاری, برنامهریزی محیطزیستی, کنترل ماسههای روان, خطوط راه آهن,
چکیده مقاله :
پژوهش حاضر با هدف طراحی مدل برنامهریزی محیطزیستی تثبیت ماسههای روان در خطوط و تاسیسات ریلی در محور سیستان و -بلوچستان با رویکرد سه مرحلهای انجام گرفت. در بخش اول با استفاده از تکنیک داده بنیاد (GT) ضمن مصاحبه با 16 نفر از خبرگان دانشگاهی، مدیران و کارشناسان ارشد تاسیسات ریلی و سازمان محیطزیست در حوزه تثبیت ماسههای روان کشور و با انجام کدگذاری بر روی دادهها، تعداد 77 مولفه در قالب 21 مقوله شناسایی و مدل مربوطه طراحی و فرضیهها مشخص گردید. در بخش دوم به منظور بررسی برازش مدل از روش مدلسازی معادلات ساختاری (SEM) با استفاده از نرمافزار Amos بهره گرفته شد. در مرحله سوم به منظور الویتبندی، برقراری ارتباط و توالی بین مولفهها از روش مدلسازی ساختاری تفسیری (ISM) استفاده شد. بر اساس نظر خبرگان و تجزیه و تحلیلهای صورت گرفته، اولویت مولفههای تاثیرگذار در برنامهریزی محیطزیستی تثبیت ماسههای روان در شش سطح احصاء گردید. مطابق نتایج حاصل، راهبردهای تدوین شده در خصوص تثبیت ماسههای روان در خطوط و تاسیسات ریلی، اثر مثبت و معناداری بر پیامدهای حاصله دارند و شدت تاثیر راهبردها بر پیامدها برابر با مقدار 91/0 است که مقدار قابل توجهی است و نشان از تاثیر قوی عوامل راهبردها بر پیامدها دارد. همچنین دو معیار هدفگذاری تثبیت ماسههای روان در خطوط و تاسیسات ریلی با توجه به رسالت وجودی آنها و شناخت شرایط موجود و نیازمندیهای پروژههای تثبیت ماسههای روان در خطوط و تاسیسات ریلی به عنوان متغیرهای دارای تاثیرگذاری بالا و تاثیرپذیری کم، به عنوان تاثیرگذارترین سطوح شناسایی شدند.
The aim of this study was to design an environmental planning model for blown sand mitigation in Sistan and Baluchestan railway tracks and stations among three-step approach. To begin, interviews were conducted with 16 university experts, managers and senior experts of railway facilities and environmental organization about blown sand mitigation in Iran. The data were coded and 77 components were identified in the form of 21 categories. Then the research model was designed and the hypotheses were identified based on the grounded theory (GT). Secondly, structural equation modeling (SEM) using Amos software was performed to fit the model. Next, interpretive structural modeling (ISM) was applied in order to prioritize, communicate and sequence between the components. The priorities of the influential components of the environmental planning model for blown sand mitigation in Sistan and Baluchestan railway tracks and stations were classified into six levels based on the expert opinions. Among them, two indicators of identification the existing conditions and the requirements for blown sand mitigation in railway tracks and stations and the goal setting for them based on their existential mission were proposed as the most effective levels. Finally, removing legal obstacles and formulating policies compatible with the environment and considering the long-term, medium-term and short-term planning of stabilization of blown sands based on executive power in order to determine applicable goals in policy priorities were proposed as solutions for controlling blown sand hazards along the Sistan and Baluchestan railway.
۱- پاکدل صمدی، هوشنگ (۱۳۹۸): راهکارهای حفاظت از خطوط راه آهن در مقابل بحران ناشی از هجوم شنهای روان و ارائه راهکار بهینه جهت مدیریت بحران، فصلنامه مهندسی حمل و نقل، دوره ۱۱، شماره ۲، صص ۴۶۰-۴۴۵.
۲- منوری، ایمان؛ مرتضوی، علیاصغر و امراللهی، عابد (۱۳۹۶): روشهای کنترل ماسههای روان بهمنظور پیشگیری از بروز بحران در خطوط ریلی راه آهن ایران، فصلنامه علمی دانش پیشگیری و مدیریت بحران، دوره ۷، شماره ۱، صص ۳۴-۲۵.
۳- ذاکری، جبار علی و فتحی، علی (۱۳۹۶): بررسی تأثیر فرمهای هندسی مختلف کوهان بر عبور ماسه از خطوط در مناطق کویری راه آهن، پژوهشنامه حمل و نقل، دوره ۱۴، شماره ۲، صص ۳۶۲-۳۴۹.
۴- اسماعیلی، مرتضی؛ کاویانی، صادق و تدین، محسن (۱۳۹۸): توسعه مدل پیشبینی آغاز خوردگی آرماتورهای تراورس بتنی B70 در خطوط راهآهن نواحی کویری (مطالعه موردی: خط راه آهن بم-زاهدان، بلاک رودشور-شورگز)، مجله علمی-پژوهشی مهندسی زیرساختهای حمل و نقل، دوره ۵، شماره ۴، صص ۵۶-۳۱.
۵- ملکانه، مجید و طلایی، محمدرضا (۱۳۹۸): مطالعه عددی رفتار تراورس کوهاندار در طوفان شن با مدلسازی جریان دوفازی گاز-جامد، مجله علمی-پژوهشی مهندسی زیرساختهای حمل و نقل، دوره ۵، شماره ۱۷، صص ۵۶-۳۷.
6- Babaei Ebrahimabadi, M. Radfar, R. & Toloei Eshlaghy, A. (2019): Knowledge Management In Railway Industry: A Conceptual Model Based On Open Innovation And Online Communities. International Journal Of Railway Research, 6(1), 63-72.
7- Bruno, L. Horvat, M. & Raffaele, L. (2018): Windblown Sand Along Railway Infrastructures: A Review Of Challenges And Mitigation Measures. Journal Of Wind Engineering And Industrial Aerodynamics, 177, 340-365.
8- Cheng, J.J. Xin, G.W. Zhi, L.Y. & Jiang, F.Q. (2017): Unloading Characteristics Of Sand-Drift In Wind-Shallow Areas Along Railway And The Effect Of Sand Removal By Force Of Wind. Scientific Reports, 7(1), 1-11.
9- Dun, H. Xin, G. Huang, N. Shi, G. & Zhang, J. (2021): Wind-Tunnel Studies On Sand Sedimentation Around Wind-Break Walls Of Lanxin High-Speed Railway II And Its Prevention. Applied Sciences, 11(13), 5989.
10- Fang, X. Cao, C. Chen, Z. Chen, W. Ni, L. Ji, Z. & Gan, J. (2020): Using Mixed Methods To Design Service Quality Evaluation Indicator System Of Railway Container Multimodal Transport. Science Progress, 103(1), 1-27.
11- Gao, Y. & Lau, C.K. (2021): Risk Assessment Of Urban Rail Transit Project Using Interpretative Structural Modelling: Evidence From China. Mathematical Problems In Engineering, 5581686.
12- Horvat, M. Bruno, L. & Khris, S. (2022). Receiver Sand Mitigation Measures Along Railways: CWE-Based Conceptual Design And Preliminary Performance Assessment. Journal Of Wind Engineering And Industrial Aerodynamics, 228, 105109.
13- Huang, W. Zhang, Y. Kou, X. Yin, D. Mi, R. & Li, L. (2020). Railway Dangerous Goods Transportation System Risk Analysis: An Interpretive Structural Modeling And Bayesian Network Combining Approach. Reliability Engineering And System Safety, 204, 107220.
14- Kecun, Z. Zhishan, A. Yingjun, P. & Diwen, C. (2016): Benefit Of Wind-Blown Sand Prevention System In The Beiluhe Section Of The Qinghai-Tibet Railway. Journal Of Desert Research, 36(5), 1216.
15- Li, X. Zhang, X. Zhang, F. & Liao, Q. (2022): Experimental Research On Sand Sediment Protection On Railway Tracks. Applied Sciences, 12(24), 12734.
16- Liu, M.H. Li, G.Y. Niu, F.J. Lin, Z.J. & Shang, Y.H. (2017): Porosity Of Crushed Rock Layer And Its Impact On Thermal Regime Of Qinghai-Tibet Railway Embankment. Journal Of Central South University, 24(4), 977-987.
17- Mehdipour, R. & Baniamerian, Z. (2019): A New Approach In Reducing Sand Deposition On Railway Tracks To Improve Transportation. Aeolian Research, 41, 100537.
18- Niu, B. Tan, L. Zhang, X.J. Qu, J. An, Z. Wang, J. Liu, B. Wang, T. & Li, K. (2020). Targeted Control Of Sand Hazards For A Railway In Extremely Arid Regions Using Fingerprinting Approaches. Geomorphology, 361, 107189.
19- Raffaele, L. & Bruno, L. (2020): Windblown Sand Mitigation Along Railway Megaprojects: A Comparative Study. Structural Engineering International, 30(3), 355-364.
20- Rahdari, M.R. Gyasi-Agyei, Y. & Rodrigo-Comino, J. (2021): Sand Drift Potential Impacts Within Desert Railway Corridors: A Case Study Of The Sarakhs-Mashhad Railway Line. Arabian Journal Of Geosciences, 14(9), 1-14.
21- Shen, W. Xiao, W. & Wang, X. (2016): Passenger Satisfaction Evaluation Model For Urban Rail Transit: A Structural Equation Modeling Based On Partial Least Squares. Transport Policy, 46, 20-31.
22- Shu, K. Wang, W. Ding, H. Lin, Q. Meli, E. Guo, J. Mazzù, A. & Liu, Q. (2022): Influence Of Sand Transport Rate On Rolling Wear And Damage Behaviors Of Wheel/Rail In Gobi And Desert Windblown Sand Environments. Tribology International, 172, 107584.
23- Soltanpour, A. Mesbah, M. & Habibian, M. (2020): Customer Satisfaction In Urban Rail: A Study On Transferability Of Structural Equation Models. Public Transport, 12(1), 123-146.
24- Srivastava, A. Swami, S. Banwet, D. (2016): Interpretive Structural Modeling Of Security Systems For Better Security Management In Railways. Traffic Safety, 4, 367-377.
25- Srivastava, A. Gaur, S.K. Swami, S. & Banwet, D.K. (2019): Analysis Of Interpretive Structural Model Of Indian Railway Security System By Analytic Hierarchy Process (AHP). Journal Of Advances In Management Research, 16(3): 378-397.
26- Wang, T. Qu, J. Ling, Y. Xie, S. & Xiao, J. (2017): Wind Tunnel Test On The Effect Of Metal Net Fences On Sand Flux In A Gobi Desert, China. Journal Of Arid Land, 9(6), 888-899.
27- Wenwen, R. (2019): Comprehensive Protection System For Wind-Sand Subgrade Of The Data-Hejiata Railway In Inner Mongolia. Journal Of Desert Research, 39(4), 129.
28- Xie, S. Qu, J. Pang, Y. Zhang, K. & Wang, C. (2021): Dynamic Mechanism Of Blown Sand Hazard Formation At The Jieqiong Section Of The Lhasa–Shigatse Railway. Geomatics, Natural Hazards And Risk, 12(1), 154-166.
29- Yan, M. Wang, H. Zuo, H. & Li, G. (2019): Wind Tunnel Simulation Of An Opencut Tunnel Airflow Field Along The Linhe-Ceke Railway, China. Aeolian Research, 39, 66-76.
30- Zhang, K. Zhao, P. Zhao, J. & Zhang, X. (2021): Protective Effect Of Multi-Row HDPE Board Sand Fences: A Wind Tunnel Study. International Soil And Water Conservation Research, 9(1), 103-115.
31- Zhang, K. Tian, J. Qu, J. Zhao, L. & Li, S. (2022): Sheltering Effect Of Punched Steel Plate Sand Fences For Controlling Blown Sand Hazards Along The Golmud-Korla Railway: Field Observation And Numerical Simulation Studies. Journal Of Arid Land, 14(6), 604-619.
_||_