اثر غلظتهای مختلف سالیسیلیک اسید بر عوامل فیزیولوژیکی در گیاه فلفل (Capsicum annuum L.)
محورهای موضوعی : ژنتیک
1 - گروه زیستشناسی، دانشکده علوم، دانشگاه پیام نور، تهران 3697-19395، ایران
کلید واژه: پرولین, سالیسیلیک اسید, قند, آسکوربات, فلفل (Capsicum annuum L.),
چکیده مقاله :
سالیسیلیک اسید ترکیب آنتی اکسیدانی است که بهمنظور افزایش مقاومت گیاهان در مقابله با تنشها به کار گرفته میشود. در این تحقیق 5 هفته پس از جوانه زنی اثر غلظتهای مختلف 0، 1/0، 7/0، 5/1، 3، 6 و 9 میلیمولار سالیسیلیک اسید بر جوانه زنی، طول اندام هوایی و ریشه، آنتوسیانین، قند، پروتئین، آسکوربات، دهیدروآسکوربات و پرولین در گیاه فلفل مورد بررسی قرار گرفت. نتایج نشان داد که غلظتهای 1/0، 7/0، 5/1 و 3 میلیمولار، درصد جوانه زنی، طول اندام هوایی و ریشه را افزایش اما غلظتهای 6 و 9 میلیمولار درصد جوانه زنی، طول اندام هوایی و ریشه را کاهش دادند. غلظتهای 5/1 و 3 میلیمولار سالیسیلیک اسید مقدار آسکوربات و دهیدروآسکوربات را کاهش دادند اما غلظتهای 6 و 9 میلیمولار مقدار آسکوربات و دهیدروآسکوربات را در برگ گیاه فلفل افزایش دادند. مقدار قند و پروتئین در برگهای تحت تیمار با غلظتهای 5/1 و 3 میلیمولار سالیسیلیک اسید افزایش معنیداری را نشان دادند اما غلظتهای 6 و 9 میلیمولار مقدار قند و پروتئین را کاهش دادند. همچنین سایر یافتههای تحقیق نشان داد که تحت شرایط آزمایشی، غلظتهای 7/0، 5/1، 3، 6 و 9 میلیمولار سالیسیلیک اسید مقدار آنتوسیانین و پرولین را در برگ گیاه فلفل افزایش دادند. بهطور کلی نتایج تحقیق نشان داد که تیمار سالیسیلیک اسید در غلظتهای پایین اثرات مثبت بر رشد و در غلظتهای بالا اثرات منفی بر رشد و نمو گیاه فلفل دارد.
Salicylic acid (SA) is an antioxidant which has been used in recent years to increases the resistance of plants to deal with stresses. In this study 5 weeks after germination, different concentrations (0.1, 0.7, 1.5, 3, 6 and 9 mM) of salicylic acid application were investigated on germination, shoot and root length, anthocyanin, reduced sugars, protein, ascorbic acid, dehydroascorbic acid and proline in pepper. The results showed that under experimental conditions concentrations of 0.1, 0.7, 1.5 and 3 mM of SA increased germination, shoot and root length, but 6 and 9 mM of SA concentrations decreased germination percent, shoot and root length. Concentrations of 1.5 and 3 mM of SA decreased ascorbic acid and dehydroascorbic acid content, but concentrations 6 and 9 mM of SA increased ascorbic acid and dehydroascorbic acid content in the leaf of pepper plant. Concentrations of 1.5 and 3 mM SA caused significant increase in sugars and protein content in treated leaf but 6 and 9 mM of concentrations SA decreased sugars and protein content. Also, other research findings showed that under experimental conditions, different concentrations (0.7, 1.5, 3, 6 and 9 mM) of SA increased content of anthocyanin and proline in the leaf of pepper plant . In general, treatment of SA low and height concentrations has positive and negative effects on plant growth on the growth of the pepper plant, respectively.
Agustina, B.V., Cesar, P., Antonio, H.J. and Pedro, D.V. (2017). The effect of abiotic stress on the salicylic acid biosynthetic pathway from mandelonitrile in peach. The Preprint Server for Biology. In Press.
Bates, L.S., Waldern, R.P. and Teare, D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-207.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindin. Analytical Biochemistry, 72: 248-254.
Choudhury, S. and Panda, S.K. (2004). Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulgarian Journal of Plant Physiology, 30 (3-4): 95-110.
Cleland, C.F. and Ben-Tal, Y. (1982). Influence of giving salicylic acid for different time periods on flowering and growth in the long-day plant Lemna gibba G3. Plant Physiology, 70: 287-290.
Dat, J.F., Foyer, C.H. and Scott, L.M. (1998). Changes in salicylic acid and antioxidants during induced thermotolerance in Mustard seedlings. Plant Physiology, 118: 1455-1461.
De Pinto, M.C., Francis, D. and De Gara, L. (1999). The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma, 209: 90-97.
El-Tayeb, M.A. (2005). Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regulation, 45: 215-225.
Enyedi, A.J., Yalpani, N., Silverman, P. and Raskin, I. (1992). Signal molecules in systemic plant resistance to pathogens and pests. Cell, 70: 879-886.
Gutierrez-Coronado, M.A., Trejo-Lopez, C. and Larqué-Saavedra, A. (1998). Effects of salicylic acid on the growth of roots and shoots in soybean. Plant Physiology and Biochemistry, 36: 653-665.
Kariola, T., Brader, G., Li, J. and Palva, E.T. (2005). Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. The Plant Cell, 17: 282-294.
Khan, M.I. R., Syeed, S., Nazar, R. and Anjum, N.A. (2012). An insight into the role of salicylic acid and jasmonic acid in salt stress tolerance. In: Phytohormones and abiotic stress tolerance in plants (Eds. Khan, N. A., Nazar, R., Iqbal, N. and Anjum, N. A.) 277-300. Springer, New York.
Kovacik, J., Gruz, J., Backor, M., Strnad, M. and Repcak, M. (2009). Salicylic acid induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Reports, 28: 135-143.
Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148: 350-382.
Martinez-Honduvilla, C.J. and Santos-Ruiz, A. (1978). Germination inhibitors in the pine seed coat. Planta, 141: 141-144.
Mahdavian, K (2017). The effect of different concentrations of salicylic acid on the pigments content, rutin and quercetin in pepper (Capsicum annuum). Iranian Journal of Plant Biology, 31: 45-58.
Nazar, R., Iqbal, N., Syeed, S. and Khan, N.A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology, 168: 807-815.
Nourafcan, H.(2014). Effect of salicylic acid on salinity stress tolerance improvement of peppermint (Mentha piperita L.) in greenhouse. Modern Science of Sustainable Agriculture Journal, 10 (2): 85-95.
Pancheva, T.V., Popova, L.P. and Uzunova, A.N. (1996). Effects of salicylic acid on growth and photosynthesis in barley plants. Journal of Plant Physiology, 149: 57-63.
Perl-treves, R. and Perl, A. (2000). Molecular oxygen and its reactive derivatives. Oxidative stress in plant. Taillor and Francis INC. Ed by: Inze, D and Montagu, M.V Chapter 1. pp: 1-32.
Popova, L., Pancheva, T. and Uzunova, A. (1997). Salicylic acid: properties, biosynthesis and physiological role. Bulgarian Journal of Plant Physiology, 23 (1-2): 85-93.
Rao, M.V., Koch, J.R. and Davis, K.R. (2000). Ozone: a tool for probing programmed cell death in plants. Plant Molecular Biology, 44: 345-358.
Sakhabutdinova, A.R., Fatkhutdinova, D.R., Bezrukova, M.V. and Shakirova, F.M. (2003). Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulgarian Journal of Plant Physiology, Special Issue, 314-319.
Sakhabutdinova, A.R., Fatkhutdinova, D.R., Bezrukova, M.V. and Shakirova, F.M. (2003). Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulg. J. Plant Physiol., Special Issue. 314-319.
Sharma, A.O., Sreelakshmi, Y. and Sharma, R. (1997). Antioxidant ability of anthocyanins against ascorbic acid oxidation. Phytochemistry, 45 (4): 671-674.
Sharma, R. and Lakhvir, S. (1988). Effect of phenolic compounds on some biochemical parameters during seed development in raya (Brassica juncea L.). Journal of Plant Science and Research, 4: 69-72.
Smirnoff, N. and Wheelev, G.L. (2000). Ascorbic acid in plants: Biosynthesis and function. Critical Reviews in plant sciences. 19 (4): 267-290.
Somogy, M. (1952). Notes on sugar determination. Journal of Biological Chemistry, 195: 19-29.
Syeed, S., Anjum, N.A., Nazar, R., Iqbal, N., Masood, A. and Khan, N.A. (2011). Salicylic acid mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiologiae Plantarum, 33: 877-886.
Szalai, G., Tari, I., Janda, T., Pestenacz, A. and Paldi, E. (2000). Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling. Biologia Plantarum, 43: 637-640.
Turkyilmaz, B., Aktas, L. Y. and Güven, A. (2005). Salicylic acid induced some biochemical and physiological changes in Phaseolus vulgaris L.F.Ü. Fen ve MÜhendisilik Bilimleri Dergisi, 17: 319-326.
Wanger, G.J. (1979). Content and vacuole/extra vacuole distribution of neutral sugars, free amino acids, and anthocyanins in protoplasts. Plant Physiology, 64: 88-93.
Yalpani N., Enyedi A.J., Leon J. and Raskin I. (1994). Ultraviolet light and ozone stimulate accumulation of salicylic acid and pathogenesis related proteins and virus resistance in tobacco. Planta, 193: 373-376.
_||_
Agustina, B.V., Cesar, P., Antonio, H.J. and Pedro, D.V. (2017). The effect of abiotic stress on the salicylic acid biosynthetic pathway from mandelonitrile in peach. The Preprint Server for Biology. In Press.
Bates, L.S., Waldern, R.P. and Teare, D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205-207.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindin. Analytical Biochemistry, 72: 248-254.
Choudhury, S. and Panda, S.K. (2004). Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulgarian Journal of Plant Physiology, 30 (3-4): 95-110.
Cleland, C.F. and Ben-Tal, Y. (1982). Influence of giving salicylic acid for different time periods on flowering and growth in the long-day plant Lemna gibba G3. Plant Physiology, 70: 287-290.
Dat, J.F., Foyer, C.H. and Scott, L.M. (1998). Changes in salicylic acid and antioxidants during induced thermotolerance in Mustard seedlings. Plant Physiology, 118: 1455-1461.
De Pinto, M.C., Francis, D. and De Gara, L. (1999). The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma, 209: 90-97.
El-Tayeb, M.A. (2005). Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regulation, 45: 215-225.
Enyedi, A.J., Yalpani, N., Silverman, P. and Raskin, I. (1992). Signal molecules in systemic plant resistance to pathogens and pests. Cell, 70: 879-886.
Gutierrez-Coronado, M.A., Trejo-Lopez, C. and Larqué-Saavedra, A. (1998). Effects of salicylic acid on the growth of roots and shoots in soybean. Plant Physiology and Biochemistry, 36: 653-665.
Kariola, T., Brader, G., Li, J. and Palva, E.T. (2005). Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. The Plant Cell, 17: 282-294.
Khan, M.I. R., Syeed, S., Nazar, R. and Anjum, N.A. (2012). An insight into the role of salicylic acid and jasmonic acid in salt stress tolerance. In: Phytohormones and abiotic stress tolerance in plants (Eds. Khan, N. A., Nazar, R., Iqbal, N. and Anjum, N. A.) 277-300. Springer, New York.
Kovacik, J., Gruz, J., Backor, M., Strnad, M. and Repcak, M. (2009). Salicylic acid induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Reports, 28: 135-143.
Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148: 350-382.
Martinez-Honduvilla, C.J. and Santos-Ruiz, A. (1978). Germination inhibitors in the pine seed coat. Planta, 141: 141-144.
Mahdavian, K (2017). The effect of different concentrations of salicylic acid on the pigments content, rutin and quercetin in pepper (Capsicum annuum). Iranian Journal of Plant Biology, 31: 45-58.
Nazar, R., Iqbal, N., Syeed, S. and Khan, N.A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology, 168: 807-815.
Nourafcan, H.(2014). Effect of salicylic acid on salinity stress tolerance improvement of peppermint (Mentha piperita L.) in greenhouse. Modern Science of Sustainable Agriculture Journal, 10 (2): 85-95.
Pancheva, T.V., Popova, L.P. and Uzunova, A.N. (1996). Effects of salicylic acid on growth and photosynthesis in barley plants. Journal of Plant Physiology, 149: 57-63.
Perl-treves, R. and Perl, A. (2000). Molecular oxygen and its reactive derivatives. Oxidative stress in plant. Taillor and Francis INC. Ed by: Inze, D and Montagu, M.V Chapter 1. pp: 1-32.
Popova, L., Pancheva, T. and Uzunova, A. (1997). Salicylic acid: properties, biosynthesis and physiological role. Bulgarian Journal of Plant Physiology, 23 (1-2): 85-93.
Rao, M.V., Koch, J.R. and Davis, K.R. (2000). Ozone: a tool for probing programmed cell death in plants. Plant Molecular Biology, 44: 345-358.
Sakhabutdinova, A.R., Fatkhutdinova, D.R., Bezrukova, M.V. and Shakirova, F.M. (2003). Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulgarian Journal of Plant Physiology, Special Issue, 314-319.
Sakhabutdinova, A.R., Fatkhutdinova, D.R., Bezrukova, M.V. and Shakirova, F.M. (2003). Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulg. J. Plant Physiol., Special Issue. 314-319.
Sharma, A.O., Sreelakshmi, Y. and Sharma, R. (1997). Antioxidant ability of anthocyanins against ascorbic acid oxidation. Phytochemistry, 45 (4): 671-674.
Sharma, R. and Lakhvir, S. (1988). Effect of phenolic compounds on some biochemical parameters during seed development in raya (Brassica juncea L.). Journal of Plant Science and Research, 4: 69-72.
Smirnoff, N. and Wheelev, G.L. (2000). Ascorbic acid in plants: Biosynthesis and function. Critical Reviews in plant sciences. 19 (4): 267-290.
Somogy, M. (1952). Notes on sugar determination. Journal of Biological Chemistry, 195: 19-29.
Syeed, S., Anjum, N.A., Nazar, R., Iqbal, N., Masood, A. and Khan, N.A. (2011). Salicylic acid mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiologiae Plantarum, 33: 877-886.
Szalai, G., Tari, I., Janda, T., Pestenacz, A. and Paldi, E. (2000). Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling. Biologia Plantarum, 43: 637-640.
Turkyilmaz, B., Aktas, L. Y. and Güven, A. (2005). Salicylic acid induced some biochemical and physiological changes in Phaseolus vulgaris L.F.Ü. Fen ve MÜhendisilik Bilimleri Dergisi, 17: 319-326.
Wanger, G.J. (1979). Content and vacuole/extra vacuole distribution of neutral sugars, free amino acids, and anthocyanins in protoplasts. Plant Physiology, 64: 88-93.
Yalpani N., Enyedi A.J., Leon J. and Raskin I. (1994). Ultraviolet light and ozone stimulate accumulation of salicylic acid and pathogenesis related proteins and virus resistance in tobacco. Planta, 193: 373-376.