An innovative method for estimating optimal Gate work function and dielectric constant of a nanoscale DG-TFET based on analytical modeling of tunneling length in ambipolar, Off and ON states
Ali Heydari
1
(
Department of Electrical Engineering, Guilan University, Rasht, Iran.
)
Seyed Ali Sedigh Ziabari
2
(
Department of Electrical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran
)
Fayzollah Khorramrouz
3
(
Department of Electrical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran
)
کلید واژه: 2D Analytical model, Surface potential, BTBT, minimum tunneling length, DG-TFET,
چکیده مقاله :
In this paper, we propose an innovative and low computational cost approach that can be used to find optimal values of parameters of a nanoscale dual gate tunneling field-effect transistor (DG-TFET). In this way, after obtaining analytical expressions for potential and energy bands of the device using the Poisson equation, the tunneling length is extracted at source-channel and channel-drain tunnel junctions in the AMBIPOLAR, Off and On states. Due to the tunneling length equation, the different values of gate work function and dielectric constant of the device are swept to determine the minimum and maximum design limits. According to the above range, the necessary checks are made to reach the local optimal behaviors. These optimum points are explained based on the achievement of optimal device performance. The accuracy and consistency of the proposed model is validated with the TCAD simulation results. The present model can be a handful for the study of TFET performance.
چکیده انگلیسی :
An innovative method for estimating optimal Gate work-function and dielectric constant of a Nano scale DG-TFET based on analytical modeling of tunneling length in ambipolar, Off and ON states
Abstract
In this paper, we propose an innovative and low computational cost approach that can be used to find optimal values of parameters of a nanoscale dual gate tunneling field-effect transistor (DG-TFET). In this way, after obtaining analytical expressions for potential and energy bands of the device using the Poisson equation, the tunneling length is extracted at source-channel and channel-drain tunnel junctions in the AMBIPOLAR, Off and On states. Due to the tunneling length equation, the different values of gate work function and dielectric constant of the device are swept to determine the minimum and maximum design limits. According to the above range, the necessary checks are made to reach the local optimal behaviors. These optimum points are explained based on the achievement of optimal device performance. The accuracy and consistency of the proposed model is validated with the TCAD simulation results. The present model can be a handful for the study of TFET performance.
Keywords: 2D Analytical model; Surface potential; BTBT; minimum tunneling length; DG-TFET.
1. Introduction
Scaling of conventional CMOS transistors according to Moore’s law is facing several challenges, such as high OFF-state current, high sub-threshold slope (SS) and other short channel effects (SCEs). The above-mentioned causes poor operation of the device and high power consumption in chips[1–5]. Hence, the proposal of a new device is inevitable. The tunneling field-effect transistor (TFET) is a decent choice because of energy efficiency and lower sub-threshold slope (SS) [6–8]. The major weaknesses of TFETs are low drain current due to poor band to band tunneling rate and conduction in the positive and negative voltages of the gate (ambipolarity). Several studies have been conducted to overcome these shortcomings that are beyond the scope of this paper [9–14]. One of the main areas of research in the field of semiconductor devices is analytical modeling. Analytical modeling can be useful in the rapid and low-cost evaluation of semiconductor devices. It is also used to offer a model for simulator software [15,16]. Some researchers proposed analytical modeling for TFET using the MOSFET model [17]. Many researchers study the Sub-threshold swing and the threshold voltage of TFET [18,19].
Several analytical studies try to offer a 2-D or 3-D expression for TFETs with or without considering the impact of the depletion region, mobile charge and drain voltage. Many 2-D studies on TFET modeling analytically calculate the tunneling generation rate using a 2-D electric field and Some studies emphasize the modeling of different physical structures of the device[19–24]. While some other researchers consider device modeling according to the type of insulator and shape and number of gates. Investigating the performance of the TFETs by using the analytical modeling also did not exclude the attention of researchers. Many attempts have focused on analytical modeling of junction-less TFETs [25]. In this paper, we start with the modeling of the surface potential along the channel using a pseudo-2D model [26] considering the depletion regions at source-channel and channel drain junction. We then find the smallest tunneling length which is very essential to finding drain current and in our proposed method. The method presented in this paper is to find the proper values of the work-function of the gate and the dielectric constant with respect to the tunneling length. We derive the tunneling length for AMBIPOLAR, OFF and ON state at different values of the gate work-function and dielectric constant using our proposed method. The two-dimensional curve obtained from this step is analyzed in order to obtain the appropriate values of the parameters. The method of analysis is a combination of qualitative analysis, evaluation of maximum or minimum points of the curves, and also referring to the TCAD simulation results. We believe that this method while avoiding complex optimization procedures is useful in achieving the desired device efficiency. A 2-D dimensional numerical simulation validates accuracy of the proposed model.
The rest of the paper is organized as follows: In section 2, device structure and analytical modeling of surface potential will be discussed. The tunneling length in AMBIPOLAR, OFF and ON state also will be presented in section 3. The validation of our proposed method also is described in Section 4. Results and discussions and finally the conclusion will be presented in sections 5 and 6 respectively.
2. Materials and Methods
Fig. 2 shows a 2-D structure of a dual gate tunneling field-effect transistor (DG-TFET). The total gate length is L2. The silicon body and oxide thicknesses are Tsi and Tox respectively. The Source and the drain are highly doped with p and n-type dopant at a concentration of N1 and N3. The channel region is lightly doped with N2. Regions R1, R2 and R3 demonstrate depletion region at the source side, channel region under the gate and drain side depletion region respectively. L1 and L3 are depletion region length. The other Physical characteristics of the device are listed in Table 1.
2.1. 2-D Poisson’s Equation in the Channel
Neglecting the mobile charge, the 2-D Poisson’s equation in the channel region of the device is given by[27]:
|
| (2) |
|
|
| (5) |
; | (6) |
| (7) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| (8) |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
| (11) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| (13) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| (14) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| (15) |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| (19) |
| (20) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| (21) |
, |
| (22) |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| (24) |
| (25) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
| (26) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| (27) |
| (28) |
| (29) |
|