Structural, Magnetic and Catalytic Properties of Non-Stoichiometric Lanthanum Ferrite Nano-Perovskites in Carbon Monoxide Oxidation
محورهای موضوعی : Journal of NanoanalysisZahra Ramezani 1 , Azim Malekzadeh 2 , Mahnaz Ghiasi 3 , Ahmad Gholizadeh 4 , Elham Ghiasi 5
1 - School of Chemistry, Damghan University, Damghan, Iran
2 - School of Chemistry, Damghan University, Damghan, Iran
3 - Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
4 - School of Physics, Damghan University, Damghan, Iran
5 - School of Chemistry, Damghan University, Damghan, Iran
کلید واژه: Electrical Conductivity, Nanoperovskite, LaFeO3, Nonstoichiometry, Catalytic CO Oxidation, Magnetic Measurements,
چکیده مقاله :
Perovskite-type oxides of LaFe(1+x)O(3+δ) (x = 0.0, 0.2, 0.5 and 0.7) were synthesized by citrate sol–gel methodto ensure the formation of nanosized perovskites. The physicochemical properties of these LaFe(1+x)O(3+δ)materials were characterized by thermal gravimetric/differential analyses, Fourier transform infraredspectroscopy, X-ray powder diffraction, scanning electron and transmission electron microscopies,ultraviolet-visible spectroscopy, Brunauer Emmett Teller nitrogen absorption, electrical conductivitymeasurements and magnetic studies. Catalytic performances of the prepared materials were evaluatedfor the carbon monoxide oxidation. Trace of FeCO3 and Fe2O3 phases were detected over the perovskitesof LaFe(1+x)O(3+δ) with excess iron (x > 0) using the XRD and FT-IR studies. The SEM results demonstratethe formation of non-spongy particles. The magnetic measurements show a charge ordering transitionat ~230 K for LaFe1.2O(3+δ) perovskite. The weak long range charge ordering of Fe2+/Fe3+ destroys over anincrease in the content of the phases other than LaFeO3 perovskite. The best σox/σRed and the lowest Ecis accounted for the more suitable path for catching and giving of the gas phase oxygen over LaFe1.2O(3+δ)nanoperovskite; meaning most favorable redox properties. The light off temperature of the CO oxidationin terms of reducibility studies is decreased about 70°C over crystalline LaFe1.2O(3+δ) catalyst.
[1] Y. Kumi, I. Kazuhiro, T. Akira, Medicine, 96(8), 6125 (2017).
[2] L. Gildo-Ortiz, J. Reyes-Gómez, J. M. Flores-Álvarez, H. Guillén-Bonilla, M. delaL.Olvera, V. M. Rodríguez Betancourtt, Y. Verde-Gómez, A. Guillén-Cervantes, J. Santoyo-Salazar, Ceram. Int., 42, 18821 (2016).
[3] P.L. Silveston, W.S. Epling, “Periodic Operation of Chemical Reactors”, 2013, Chap. 6, “Automotive Exhaust Catalysis”, 141.
[4] S. Gatla, D. Aubert, G. Agostini, O. Mathon, S. Pascarelli, T. Lunkenbein, M. G. Willinger, and H. Kaper, ACS Catal. 6 (9), 6151 (2016).
[5] Y. Maeda, T. Akita, M. Kohyama, Catal. Lett, 144 (12) 2086 (2014).
[6] M. F. M. Zwinkels, S. G. Järas, P. G. Menon, Catal. Rev. Sci. Eng. 35, 319 (1993).
[7] S. Vasala, M. Karppinen, Prog. Solid State Ch., 43, 1 (2015).
[8] C. Artini, J. Eur. Ceram. Soc., 37 (2), 427 (2017).
[9] R. Spinicci, A. Tofanari, A. Delmastro, D. Mazza, S. Ronchetti, Mater. Chem. Phys. 76, 20 (2002).
[10] S. M. Khetre, H. V. Jadhav and S. R. Bamane, Rasayan J. Chem., 3 (1), 82 (2010).
[11] D. Berger, C. Matei, G. Voicu, A. Bobaru, J. Eur. Ceram. Soc. 30, 617 (2010).
[12] E. Ghiasi, A. Malekzadeh, M. Ghiasi, J. Rare Eatrths, 31(10), 997 (2013).
[13] M. Khazaei, A. Malekzadeh, F. Amini, Y. Mortazavi, and A. Khodadadi, Cryst. Res. Technol. 45(10), 1064 (2010).
[14] L. Abadian, A. Malekzadeh, A. Khodadadi, Y. Mortazavi, Iran. J. Chem. Chem. Eng. 27, 71 (2008).
[15] [H. Bojari, A. Malekzadeh, M. Ghiasi, A. Gholizadeh, R. Azargohar, and A. K. Dalai, Cryst. Res. Technol. 48(6) 355 (2013)].
[16] W. Y. Zhao, P. Wei, H. B. Cheng, X. F. Tang, Q. J. Zhang, J. Am. Ceram. Soc., 90(7), 2095 (2007).
[17] G. Pecchi, C. Campos, O. Pena, Mater. Res. Bull. 44, 846 (2009).
[18] Z.X. Wei, Y.Q. Xu, H.Y. Liuc, C.W. Hu, J. Hazard. Mater. 165, 1056 (2009).
[19] M. Sivakumar, A. Gedanken, W. Zhong, Y.H. Jiang, Y.W. Du, I. Brukental, D. Bhattacharya, Y. Yeshurun, I. Nowik, J. Mater. Chem. 14, 764 (2004).
[20] J.Q. Li, Y. Matsui, S.K. Park, Y. Tokura, Phys. Rev. Lett. 79, 297 (1997).
[21] H.J. Xiang, M.H. Whangbo, Phys. Rev. Lett. 98, 246403 (2007).
[22] T. Misawa, J. Yoshitake, Y. Motome, Phys. Rev. Lett. 110, 246401 (2013).