چکیده مقاله :
Biologically, two parameters of size and surface charge of the nanoparticles, especially therapeutic nanoparticles influence their kinetics in vivo as well as their interaction with the cellular and biological membranes and resulting their efficacy. So effective characterization of nanomaterials including nanometer-sized particles and micelles is a key issue to develop the well-deserved and well-defined Nano-formulations focus on the therapeutic goals in nanomedicine research. Determining the particle size and surface charge of nanoparticles are essential to characterize therapeutic nanoparticles properly. Measurements related to techniques of dynamic light scattering (DLS) and zeta potential (ZP) are known as easy, simple, and reproducible tools to obtain the size and surface charge of nanoparticles. Regarding characterization of particle size and surface charge by the DLS and ZP there is challenges for researchers to interpret and analyze the exported data effectively due to lack of adequate understanding focus on physical principles governing on the operating system of these techniques and how preparing samples for characterization and so on. With this in mind, this review tries to address this issue focus on the fundamental principles governing on techniques of DLS and ZP to better analyzing and interpreting the reported results such as hydrodynamic size, diffusion, inter particular interactions as well as study of the colloidal system stability based on surface charge of nanoparticles.
منابع و مأخذ:
[1] L. Treuel, K.A. Eslahian, D. Docter, T. Lang, R. Zellner, K. Nienhaus, M. Maskos, Physicochemical characterization of nanoparticles and their behavior in the biological environment, Phys. Chem. Chem. Phys., 16, 15053 (2014). doi:10.1039/c4cp00058g
2. Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Research Letters. 2012;7(1):144.
[3] F. Varenne,, Rustique, E, Botton, J, Coty, J B, Lanusse, G, Lahcen, M A, Negri L., Towards quality assessed characterization of nanomaterial: Transfer of validated protocols for size measurement by dynamic light scattering and evaluation of zeta potential by electrophoretic light scattering ,Int. J. Pharm., 528, 299 (2017). doi:10.1016/j.ijpharm.2017.06.006
4. Bhattacharjee S, Ershov D, Fytianos K, van der Gucht J, Alink GM, Rietjens IMCM, et al. Cytotoxicity and cellular uptake of tri-block copolymer nanoparticles with different size and surface characteristics. Particle and Fibre Toxicology. 2012;9(1):11.
5. Bhattacharjee S, Haan LHJDE, Evers NM, Jiang X, Marcelis ATM, Zuilhof H, et al. Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Particle and Fibre Toxicology. 2010;7(1):25.
6. Favi PM, Gao M, Johana Sepúlveda Arango L, Ospina SP, Morales M, Pavon JJ, et al. Shape and surface effects on the cytotoxicity of nanoparticles: Gold nanospheres versus gold nanostars. Journal of Biomedical Materials Research Part A. 2015;103(11):3449-62.
7. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine. 2011;6(4):715-28.
8. Kong B, Seog JH, Graham LM, Lee SB. Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine. 2011;6(5):929-41.
9. Alshehri AH, Jakubowska M, Młożniak A, Horaczek M, Rudka D, Free C, et al. Enhanced Electrical Conductivity of Silver Nanoparticles for High Frequency Electronic Applications. ACS Applied Materials & Interfaces. 2012;4(12):7007-10.
10. Shi D, Sadat ME, Dunn AW, Mast DB. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Nanoscale. 2015;7(18):8209-32.
11. Nealon GL, Donnio B, Greget R, Kappler J-P, Terazzi E, Gallani J-L. Magnetism in gold nanoparticles. Nanoscale. 2012;4(17):5244.
12. Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chemical Reviews. 2016;116(5):2826-85.
13. Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. International Journal of Nanomedicine. 2012:5577.
[14] S. Bhattacharjee, I. M. Rietjens, M.P. Singh, T. M. Atkins, T. K. Purkait, Z. Xu, G. M. Alink, Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges, Nanoscale, 5, 4870 (2013). doi: 10.1039/c3nr34266b
15. Axson JL, Stark DI, Bondy AL, Capracotta SS, Maynard AD, Philbert MA, et al. Rapid Kinetics of Size and pH-Dependent Dissolution and Aggregation of Silver Nanoparticles in Simulated Gastric Fluid. The Journal of Physical Chemistry C. 2015;119(35):20632-41.
16. Voigt N, Henrich-Noack P, Kockentiedt S, Hintz W, Tomas J, Sabel BA. Surfactants, not size or zeta-potential influence blood–brain barrier passage of polymeric nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics. 2014;87(1):19-29.
17. Doostmohammadi A, Monshi A, Salehi R, Fathi MH, Golniya Z, Daniels AU. Bioactive glass nanoparticles with negative zeta potential. Ceramics International. 2011;37(7):2311-6.
18. Griesser J, Burtscher S, Köllner S, Nardin I, Prüfert F, Bernkop-Schnürch A. Zeta potential changing self-emulsifying drug delivery systems containing phosphorylated polysaccharides. European Journal of Pharmaceutics and Biopharmaceutics. 2017;119:264-70.
19. Bonengel S, Prüfert F, Jelkmann M, Bernkop-Schnürch A. Zeta potential changing phosphorylated nanocomplexes for pDNA delivery. International Journal of Pharmaceutics. 2016;504(1-2):117-24.
20. Wiącek AE. Investigations of DPPC effect on Al2O3 particles in the presence of (phospho)lipases by the zeta potential and effective diameter measurements. Applied Surface Science. 2011;257(9):4495-504.
21. Phianmongkhol A, Varley J. ζ potential measurement for air bubbles in protein solutions. Journal of Colloid and Interface Science. 2003;260(2):332-8.
22. Uskoković V, Odsinada R, Djordjevic S, Habelitz S. Dynamic light scattering and zeta potential of colloidal mixtures of amelogenin and hydroxyapatite in calcium and phosphate rich ionic milieus. Archives of Oral Biology. 2011;56(6):521-32.
23. Varenne F, Botton J, Merlet C, Vachon J-J, Geiger S, Infante IC, et al. Standardization and validation of a protocol of zeta potential measurements by electrophoretic light scattering for nanomaterial characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2015;486:218-31.
[24] J. D. Clogston, R. M. Crist, S. E. McNeil, Cham, 187 (2016).
25. Verma A, Stellacci F. Effect of Surface Properties on Nanoparticleâ-Cell Interactions. Small. 2010;6(1):12-21.
26. Ziegler J, Wachtel H. Comparison of Cascade Impaction and Laser Diffraction for Particle Size Distribution Measurements. Journal of Aerosol Medicine. 2005;18(3):311-24.
27. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V. Time Evolution of the Nanoparticle Protein Corona. ACS Nano. 2010;4(7):3623-32.
28. Liu H, Pierre-Pierre N, Huo Q. Dynamic light scattering for gold nanorod size characterization and study of nanorod–protein interactions. Gold Bulletin. 2012;45(4):187-95.
29. Waghmare M, Khade B, Chaudhari P, Dongre P. Multiple layer formation of bovine serum albumin on silver nanoparticles revealed by dynamic light scattering and spectroscopic techniques. Journal of Nanoparticle Research. 2018;20(7).
30. Bhattacharjee S. DLS and zeta potential – What they are and what they are not? Journal of Controlled Release. 2016;235:337-51.
31. Rademeyer P, Carugo D, Lee JY, Stride E. Microfluidic system for high throughput characterisation of echogenic particles. Lab on a Chip. 2015;15(2):417-28.
32. Fan X, Zheng W, Singh DJ. Light scattering and surface plasmons on small spherical particles. Light: Science & Applications. 2014;3(6):e179-e.
[33] C. Fleischer, C. K. Payne, Acc Chem Res., 47, 2651 (2017).
34. Milani S, Baldelli Bombelli F, Pitek AS, Dawson KA, Rädler J. Reversible versus Irreversible Binding of Transferrin to Polystyrene Nanoparticles: Soft and Hard Corona. ACS Nano. 2012;6(3):2532-41.
35. Rahdar A, Almasi-Kashi M. Correction on “Dynamic and spectroscopic studies of nano-micelles comprising dye in water/ dioctyl sodium sulfosuccinate /decane droplet microemulsion at constant water content” [J. Mol. Struct. 1128 (2017) 257–262]. Journal of Molecular Structure. 2019;1183:351-2.
36. Rahdar A, Almasi-Kashi M. Photophysics of Rhodamine B in the nanosized water droplets: A concentration dependence study. Journal of Molecular Liquids. 2016;220:395-403.
37. Rahdar A, Almasi-Kashi M, Mohamed N. Light scattering and optic studies of Rhodamine B-comprising cylindrical-like AOT reversed micelles. Journal of Molecular Liquids. 2016;223:1264-9.
38. Rahdar A, Almasi-Kashi M, Khan AM, Aliahmad M, Salimi A, Guettari M, et al. Effect of ion exchange in NaAOT surfactant on droplet size and location of dye within Rhodamine B (RhB)-containing microemulsion at low dye concentration. Journal of Molecular Liquids. 2018;252:506-13.
39. Rahdar A, Almasi-Kashi M, Aliahmad M. Effect of chain length of oil on location of dye within AOT nanometer-sized droplet microemulsions at constant water content. Journal of Molecular Liquids. 2017;233:398-402.
40. Rahdar A, Najafi-Ashtiani H, Sanchooli E. Fluorescence and dynamics studies of dye-biomolecule interaction in the nano-colloidal systems. Journal of Molecular Structure. 2019;1175:821-7.
41. Rahdar A, Almasi-Kashi M. Dynamic light scattering of nano-gels of xanthan gum biopolymer in colloidal dispersion. Journal of Advanced Research. 2016;7(5):635-41.
[42] A. Rahdar, M. Almasi-Kashi, Entrapment–D-(+)-Glucose Water Nanodroplet: Synthesis and Dynamic Light Scattering, J Nanostruct, 8, 202 (2018).doi: 10.22052/JNS.2018.02.010
43. Finnigan JA, Jacobs DJ. Light scattering from benzene, toluene, carbon disulphide and carbon tetrachloride. Chemical Physics Letters. 1970;6(3):141-3.
44. Noday DA, Steif PS, Rabin Y. Viscosity of Cryoprotective Agents Near Glass Transition: A New Device, Technique, and Data on DMSO, DP6, and VS55. Experimental Mechanics. 2008;49(5):663-72.
45. Chanamai R, McClements DJ. Creaming Stability of Flocculated Monodisperse Oil-in-Water Emulsions. Journal of Colloid and Interface Science. 2000;225(1):214-8.
46. Panchal J, Kotarek J, Marszal E, Topp EM. Analyzing Subvisible Particles in Protein Drug Products: a Comparison of Dynamic Light Scattering (DLS) and Resonant Mass Measurement (RMM). The AAPS Journal. 2014;16(3):440-51.
47. Zheng T, Cherubin P, Cilenti L, Teter K, Huo Q. A simple and fast method to study the hydrodynamic size difference of protein disulfide isomerase in oxidized and reduced form using gold nanoparticles and dynamic light scattering. The Analyst. 2016;141(3):934-8.
48. Meng Z, Hashmi SM, Elimelech M. Aggregation rate and fractal dimension of fullerene nanoparticles via simultaneous multiangle static and dynamic light scattering measurement. Journal of Colloid and Interface Science. 2013;392:27-33.
49. Liu HH, Surawanvijit S, Rallo R, Orkoulas G, Cohen Y. Analysis of Nanoparticle Agglomeration in Aqueous Suspensions via Constant-Number Monte Carlo Simulation. Environmental Science & Technology. 2011;45(21):9284-92.
50. Zhou C, Qi W, Neil Lewis E, Carpenter JF. Concomitant Raman spectroscopy and dynamic light scattering for characterization of therapeutic proteins at high concentrations. Analytical Biochemistry. 2015;472:7-20.
51. Niu W, Chua YAA, Zhang W, Huang H, Lu X. Highly Symmetric Gold Nanostars: Crystallographic Control and Surface-Enhanced Raman Scattering Property. Journal of the American Chemical Society. 2015;137(33):10460-3.
52. Grouchko M, Roitman P, Zhu X, Popov I, Kamyshny A, Su H, et al. Erratum: Corrigendum: Merging of metal nanoparticles driven by selective wettability of silver nanostructures. Nature Communications. 2014;5(1).
[53] X. Zhao, S. Zhu, Y. Song, J. Zhang, B.Yang, Photoluminescent graphene quantum dots for in vitro and in vivo bioimaging using long wavelength emission, RSC Adv., 5, 15187 (2015). doi: 10.1039/C5RA02961A
54. Kim K-H, Xing H, Zuo J-M, Zhang P, Wang H. TEM based high resolution and low-dose scanning electron nanodiffraction technique for nanostructure imaging and analysis. Micron. 2015;71:39-45.
55. Mansfield EDH, Sillence K, Hole P, Williams AC, Khutoryanskiy VV. POZylation: a new approach to enhance nanoparticle diffusion through mucosal barriers. Nanoscale. 2015;7(32):13671-9.
56. Fielding LA, Mykhaylyk OO, Armes SP, Fowler PW, Mittal V, Fitzpatrick S. Correcting for a Density Distribution: Particle Size Analysis of Core–Shell Nanocomposite Particles Using Disk Centrifuge Photosedimentometry. Langmuir. 2012;28(5):2536-44.
57. Krpetić Ž, Davidson AM, Volk M, Lévy R, Brust M, Cooper DL. High-Resolution Sizing of Monolayer-Protected Gold Clusters by Differential Centrifugal Sedimentation. ACS Nano. 2013;7(10):8881-90.
58. Montes Ruiz-Cabello FJ, Trefalt G, Maroni P, Borkovec M. Electric double-layer potentials and surface regulation properties measured by colloidal-probe atomic force microscopy. Physical Review E. 2014;90(1).
59. Missana T, Adell A. On the Applicability of DLVO Theory to the Prediction of Clay Colloids Stability. Journal of Colloid and Interface Science. 2000;230(1):150-6.
60. Leite FL, Bueno CC, Da Róz AL, Ziemath EC, Oliveira ON. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy. International Journal of Molecular Sciences. 2012;13(12):12773-856.