Photocatalytic degradation of Malachite Green using ZnO and ZnOTiO2 nanoparticles from aqueous solution
محورهای موضوعی : Journal of NanoanalysisHadi Baseri 1 , Elahe Alizadeh 2
1 - School of Chemistry, Damghan University, Damghan, Iran.
2 - School of Chemistry, Damghan University, Damghan, Iran
کلید واژه: nanoparticles, ZnO, Malachite green, Photo Catalyst, Zno-Tio2, Color Contaminant,
چکیده مقاله :
Today, despite the increasing demands for the products of chemical industries and the relatedfactories, the challenges of environmental pollution have not been improved and it is approaching avery dangerous stage. In this regard, the role of dyeing industries in contaminating the environment isundeniable. In this research, ZnO and ZnO-TiO2 nanoparticles were synthesized by co-precipitation andsol-gel methods, respectively. The synthesized nanoparticles were characterized by XRD and FE-SEMtechniques and their band gap energy were determined using the UV-Vis spectrum obtained from thesuspension of nanoparticles. By using synthesized nanoparticles, degradation of malachite green underirradiation of the UV (A) -Visible mixture light from aqueous solution were evaluated and the effect ofdifferent parameters such as amount of photo catalyst, time of light irradiation and dose of H2O2hasbeen studied. The destruction amount was determined by UV-Vis spectroscopy method. Based on thereported results, the maximum degradation efficiency of about 99% was obtained in the optimal valuesof experimental conditions.
1.T. R. Bastami and A. Ahmadpour, Preparation of magnetic photocatalyst nano hybrid decorated by poly oxometalate for the degradation of a pharmaceutical pollutant under solar light. Environ, Sci. Pollut. Res., 23, 8849(2016).
2.S.J. Culp, L.R. Blankenship, D.F. Kusewitt, D.R. Doerge, L.T. Mulligan and F.A. Beland, Toxicity and metabolism of malachite green and leucomalachite green during short-term feeding to Fischer 344 rats and B6C3F1 mice, Chem. Biol. Interact., 122, 247(1999).
3.K. Lee, J. Wu and Z. Cai, Determination of malachite green and leucomalachite green in edible goldfish muscle by liquid chromatography–ion trap mass spectrometry, J. Chromatogr. B., 843, 247 (2006).
4.C. Cha, D.R. Doerge and C.E. Cerniglia, Biotransformation of Malachite Green by the Fungus Cunninghamella elegans, Appl. Environ. Microbial., 67, 4358(2001).
5. S. Srivastava, R. Sinha and D. Roy, Toxicological effects of malachite green, Aquat. Toxicol., 66, 319 (2004).
6.M. Rajabi, B. Mirza, K. Mahanpoor, M. Mirjalili, F. Najafi, O. Moradi, H. Sadegh, R. Shahryari-ghoshekandi, M. Asif, I. Tyagi, S. Agarwal and V. K.Gupta, Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: determination of equilibrium and kinetics parameters, J. Ind. Eng. Chem., 34, 130 (2016).
7.R. Elmoubarki, F.Z. Mahjoubi, H. Tounsadi, J. Moustadraf, M. Abdennouri, A. Zouhri, A. El Albani and N. Barka, Adsorption of textile dyes on raw and decanted Moroccan clays: Kinetics, equilibrium and thermodynamics, Water Resour. Inst., 9, 16 (2015).
8. N. Barka, S. Qourzal, A. Assabbane, A. Nounah and Y. Ait-Ichou,Removal of Reactive Yellow 84 from aqueous solutions by adsorption onto hydroxyapatite,J. Saudi Chem. Soc., 15,263(2011).
9.H. Tounsadi, A. Khalidi, M. Abdennouri and N. Barka, Biosorption potential of Diplotaxis harra and Glebionis coronaria L. biomasses for the removal of Cd (II) and Co (II) from aqueous solutions, J. Environ. Chem. Eng., 3 822 (2015).
10.C. Djilani, R. Zaghdoudi, F. Djazi, B. Bouchekima, A. Lallam, A. Modarressi and M. Rogalski, Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon, J. Taiwan Inst. Chem. Eng., 53, 112(2015).
11.O. Njoku, K.Y. Foo, M. Asif and B.H. Hameed, Preparation of activated carbons from rambutan (Nephelium lappaceum) peel by microwave-induced KOH activation for acid yellow 17 dye adsorption, Chem. Eng. J., 250, 198 (2014).
12.A.J. Kajekar, B.M. Dodamani, A.M. Isloor, A.K. Zulhairun, N.B. Cheer, A.F. Ismail and S.J. Shilton, Preparation and characterization of novel PSf/PVP/PANI-nanofiber nanocomposite hollow fiber ultrafiltration membranes and their possible applications for hazardous dye rejection, Desalination., 365 117 (2015).
13.X. Chen, Y. Zhao, J. Moutinho, J. Shao, A.L. Zydney and Y. He,Recovery of small dye molecules from aqueous solutions using charged ultrafiltration membranes, J. Hazard. Mater., 284, 58 (2015).
14.T. Chidambaram, Y. Oren and M. Noel,Fouling of nanofiltration membranes by dyes during brine recovery from textile dye bath wastewater, Chem. Eng. J., 262, 156 (2015).
15.J. Lin, W. Ye, H. Zeng, H. Yang, J. Shen, S. Darvish manesh, P. Luis, A. Sotto and B. Van der Bruggen, Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes, J. Membr. Sci., 477, 183 (2015).
16. A.K. Verma, R.R. Dash and P. Bhunia, A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters, J. Environ.Manag., 93, 154 (2012).
17.S. Sadri Moghaddam, M.R. Alavi Moghaddam and M. Arami, Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology, J. Hazard. Mater., 175, 651 (2010).
18.F.R. Furlan, L. Graziela de Melo da Silva, A.F. Morgado, A. Augusto Ulson de Souza and S.M.G. Ulson de Souza, Removal of reactive dyes from aqueous solutions using combined coagulation/flocculation and adsorption on activated carbon, Resour. Conserv. Recycle., 54, 283 (2010).
19. B. Bonakdar pour, I. Vyrides and D.C. Stuckey, Comparison of the performance of one stage and two stage sequential anaerobic–aerobic biological processes for the treatment of reactive-azo-dye-containing synthetic wastewaters, Int. Biodeterior. Biodegrad., 65, 591 (2011).
20. A.R. Khataee, G. Dehghan, A. Ebadi, M. Zarei and M. Pourhassan, Biological treatment of a dye solution by Macroalgae Chara sp.: Effect of operational parameters, intermediates identification and artificial neural network modeling, Bioresour. Technol., 101, 2252 (2010).
21. N. Barka, S. Qourzal, A. Assabbane, A. Nounah and Y. Ait-Ichou, Photocatalytic degradation of an azo reactive dye, Reactive Yellow 84, in water using an industrial titanium dioxide coated media, Arab, J. Chem., 3, 279 (2010).
22. N. Barka, S. Qourzal, A. Assabbane, A. Nounah and Y. Ait-Ichou, Photocatalytic degradation of patent blue V by supported TiO2: Kinetics, mineralization, and reaction pathway, Chem. Eng. Commun., 198, 1233 (2011).
23. M. Abdennouri, M. Baâlala, A. Galadi, M. El Makhfouk, M. Bensitel, K. Nohair, M. Sadiq, A. Boussaoud and N. Barka, Photocatalytic degradation of pesticides by titanium dioxide and titanium pillared purified clays, Arab. J. Chem., (in press).
24.M. Abdennouri, A. Galadi, N. Barka, M. Baâlala, K. Nohair, M. Elkrati, M. Sadiq and M. Bensitel, Synthesis, characterization and photocatalytic activity by para-chlorotoluene photooxidation of tin oxide films deposited on Pyrex glass substrates, Phys Chem. News., 54, 126 (2010).
25. K. Ayoub, E.D. Hullebusch, M. Cassir and A. Bermond, Application of advanced oxidation processes for TNT removal: a review, J. Hazard. Mater., 178, 10 (2010).
26.A.M. Asiri, M.S. Al-Amoudi, T.A. Al-Talhi and A.D. Al-Talhi, Photodegradation of Rhodamine 6G and phenol red by nanosized TiO2 under solar irradiation, J.Saudi Chem. Soc.,15, 121 (2011).
27.B.A. Wols and C.H.M. Hofman-Caris, Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water,Water Res., 46, 2815 (2012).
28.S. Saha and A. Pal, Microporous assembly of MnO2 nanosheets for malachite green degradation,Sep. Purif. Technol., 134, 26 (2014).
29.E.S. Baeissa, Photocatalytic degradation of malachite green dye using Au/NaNbO3 nanoparticles, J. Alloy. Compd., 672,564 (2016).
30.C. Bouasla, M.E. Samar and F. Ismail, Degradation of methyl violet 6B dye by the Fenton process, Desalination., 254, 35 (2010).
31.S. He, G.S. Wang, C. Lu, X. Luo, B. Wen, L. Guo and M.S. Cao, Controllable fabrication of CuS hierarchical nanostructures and their optical, photocatalytic, and wave absorption properties, Chem.Plus.Chem., 78, 250 (2013).
32.D. Mohan and C.U. Pittman Jr, Arsenic removal from water/wastewater using adsorbents—a critical review, J. Hazard. Mater., 142, 1 (2007).
33. M. Rana, H.J. Cho, T.K. Roy, L.M. Mirica, and A.K. Sharma, Azo-dyes based small bifunctional molecules for metal chelation and controlling amyloid formation, Inorganica, Chimica, Acta., 471, 419 (2018).
34.X. Chen, D. Chu, L. Wang, W. Hu, H, Yang, J. Sun, and S. Zhang, Hydrogen peroxide-assisted synthesis of novel three-dimensional octagonal-like CuO nanostructures with enhanced visible-light-driven photocatalytic activity,J. Mol. Struct., 1157, 337 (2018).
35.N. Boussatha, M. Gilliot, H. Ghoualem and J. Martin, Formation of nanogranular ZnO ultrathin films and estimation of their performance for photocatalytic degradation of amoxicillin antibiotic, Mater. Res. Bull., 99, 485 (2018).
36.C. Jaramillo-Páez, J.A. Navío and M.C. Hidalgo, Silver-modified ZnO highly UV-photoactive, J. Photochem. Photobiol. A., 356, 112(2018).
37.A.Modwi, M.A. Abbo, E.A. Hassan, O.K. Al-Duaij and A.Houas, Adsorption kinetics and photocatalytic degradation of malachite green (MG) via Cu/ZnO nanocomposites, J. Environ. Chem. Eng. 5, 5954(2017).
38.D. Jung, Syntheses and characterizations of transition metal-doped ZnO, Solid State Sci., 12, 466 (2010).
39.M. Forouzani, H. R. Mardani, M. Ziari, A. Malekzadeh and P. Biparva, Comparative study of oxidation of benzyl alcohol: influence of Cu-doped metal cation on nano ZnO catalytic activity, Chem. Eng. J., 275, 220 (2015).
40.E.S. Baeissa, Photocatalytic degradation of malachite green dye using Au/NaNbO3 nanoparticles, J. Alloy. Compd., 672, 564 (2016).
41.C. Galindo, P. Jacques and A. Kalt, Photochemical and photocatalytic degradation of an indigoid dye: a case study of acid blue 74 (AB74), J. Photochem. Photobiol. A., 141.1, 47 (2001).
42. M.A. Behnajady, N. Modirshahla, M. Mirzamohammady, B. Vahid and B. Behnajady, Increasing photoactivity of titanium dioxide immobilized on glass plate with optimization of heat attachment method parameters, J. Hazard. Mater., 160, 508 (2008).