مدلسازی توزیع درآمد برای ایران: مقایسه الگوی داگوم با چند مدل منتخب
محورهای موضوعی : اقتصاد کار و جمعیتصادق بختیاری 1 , سجاد محموداوغلی 2
1 - استاد دانشگاه آزاد اسلامی واحد خوراسگان
2 - کارشناس ارشد اقتصاد
کلید واژه: توزیع درآمد, توزیع داگوم, حداکثر درستنمایی,
چکیده مقاله :
هدف این پژوهش برآورد مدلهای دوپارامتری وایبل و سه پارامتری بتا، لگ نرمال، گاما و داگوم به روش حداکثر درستنمایی (MLE) به صورت سالانه با استفاده از اطلاعات مربوط به هزینه و درآمد خانوارهای ایرانی برای سالهای 1390-1361 به وسیله زیربرنامه محاسبهگر بستهی VGAM در نرم افزار R بوده است. مقایسه برازش مدلهای یاد شده به وسیله معیار اطلاعات آکائیک (AIC) صورت گرفته است. نتایج نشان میدهد. در دورهی1390-1361 با وجود فراز و نشیبهای مقادیر این شاخص در میان خانوارهای کشور، میزان ضریب جینی روندی کاهنده داشته یعنی در واقع شدت نسبی نابرابری درآمد در کشور کاهنده، ولی میزان کاهش آن بسیار محدود بود. همچنین براساس معیار اطلاعات آکائیک و همچنین نمودارهای حاصل از توابع چگالی احتمال مشخص شد که تابع توزیع داگوم یک برازشگر خوب است. مقادیر برآورد شده پارامترهای بتا و دلتا در طول این سالها روند صعودی و پارامتر آلفا روند نزولی دارد.
In this paper, Weibull two-parameter and beta three-parameter models, Lognormal, gamma and Dagum are estimated by Maximum Likelihood Estimation (MLE) annually and using the data of Iranian Household income and expense during 1982-2011 via VGAM in R software package subprogram calculator. The comparison of these models will be done by Akaike Information Criterion (AIC). According to AIC and the charts of the probability density functions, it is clear that Degum distribution function has a good fit. Estimated parameters of beta and delta are increasing and alpha parameter is declining during these years.
منابع
- ابونوری، اسمعیل، خوشکار، آرش، حیدری، حسین (1385). بررسی تحولات توزیع درآمد در شهرستان بندر لنگه طی برنامه سوم توسعه اقتصادی- اجتماعی. مجموعه مقالات اولین همایش توسعه شهرستان بندر لنگه قابلیت و راهکارها، دانشگاه آزاد اسلامی واحد بندر لنگه.
- بختیاری، صادق، نصراللهی، خدیجه، عمادزاده، مصطفی (1380). تحلیلی از وضعیت توزیع درآمد (هزینه) در استان اصفهان (72 - 1368). برنامه و بودجه، 6 (9 و 10): 81 – 51.
- خسروینژاد، علی اکبر (1391). برآورد فقر و شاخصهای فقر در مناطق شهری و روستایی، فصلنامه مدلسازی اقتصادی، 6 (2): 39-60.
- هژبرکیانی، کامبیز، مرادی، علیرضا (1387). نرم افزار R: محیط برنامهنویسی برای تحلیلهای اقتصادسنجی و سریهای زمانی، فصلنامه مدلسازی اقتصادی،2 (5): 163-186.
- Abounoori, E. (1987). Mathematico-statistical analysis of distribution of income and effect of oil on economic inequality within OPEC countries.
- Bartosova, J. (2006). Logarithmic-normal model of household income distribution in the Czech Republic after 1990. Forum statisticum slovacum, Slovak Statistical and Demographical Society, Bratislava, 3: 3-10.
- Chotikapanich, D. W. E., & Griffiths, D. S. P., & Valencia V. (2010). Global income distributions and inequality, 1993 and 2000: Incorporating country-level inequality modeled with beta distributions. Forthcoming in the review of economics and statistics.
- Cohen, A. (1951). Estimating parameters of logarithmic normal distributions by maximum likelihood, Journal of the American Statistical Association, 46: 206-212..
- Dagum, C. (1983).Income distribution models, in S. Kotz, N. L. Johnson and C. Read (eds.) Encyclopedia of Statistical Sciences, vol. 4, JohnWiley, New York.
- Dagum, C. (1990). Generation and properties of income distribution functions. In C. Dagum and Zenga, Eds. Income and wealth distribution, inequality and poverty, Heildeberg, Springer Verlag.
- Dancelli, L. (1986). Tendenza alla massima ed alla minima concentrazione nel modelo di distribuzione del redito di Dagum. In Scritti in Honore di Francesco Brambilla, 1: 249-267.
- Domanski, C., & Jedrzejczak, A. (1998). Maximum likelihood estimation of the dagum model parameters. International Advances in Economic Research, 4: 243–252.
- Fisk, P. R. (1961). The graduation of income distributions. Econometrica, 29:171–185.
- Gertel, H. R., & Giuliodori, R. F., & Rodríguez, A., & Paula F. A. (2001). Unemployment and income distribution analysis: New evidences using a agum Parametric income distribution model, facultad de ciencias económicas, reunión annual de la aaep, buenos aires.
- Gibrat, R. (1931). Les inegalites économiques, Paris, librairie du recueil sirey.
- Harter, H.L., & Moore, A.L. (1966). Local-maximum-likelihood estimation of the parameter of three-parameter lognormal population from complete and censored samples, Journal of the American Statistical Society, 61: 842—851.
- Hill, M.B. (1963). The three-parameter log-normal distribution and bayesian analysis of a point-source epidemic. Journal of the American Statistical Association, 58: 112-120.
- Kleiber, C. & Kotz, S. (2003). Statistical size distribution in economics and actuarial sciences, London: Cambridge University Press.
- Kotz, S., & Johnson, N. L., & Read, C. (1983). Encyclopedia of statistical sciences, John Wiley, New York.
- Latorre, G. (1989). Asymptotic distributions of indices of concentration: Empirical erification and application, in: Studies in contemporary economics. income and wealth istribution, inequality and poverty, C. Dagum, M. Zenga (Eds), Springer- Verlag, Berlin.
- Latorre, G. (1988). Propriet`a campionarie del modello di dagum per la distribuzione dei redditi, Statistica, 48: 15–27.
- Majumder, A., & Chakravarty, S. R. (1990). Distribution of personal income: Development of a New Model and Its Application to US Income Data. Journal of Applied Econometrics, 5: 189–196.
- Pareto, V. (1895). La legge Della domanda, giornale degli economisti, 10: 59-68. English translation in rivista di politica economica, 87: 691–700.
- Pareto, V. (1897) Cour's d’Economie Politique, Rouge, Lausanne.
- Shao, Q. (2002). Maximum likelihood estimation for generalised logistic distributions, Communications in Statistics: Theory and Methods, 31:1687–1700.
- Stoppa, G. (1995) Explicit Estimators for income distributions, in c. dagum and a. lemmi (eds.) research on economic inequality, 6: Income Distribution, Social Welfare, Inequality and Poverty, Greenwich, CT: JAI Press.
- Thurow, L. C. (1970). Analyzing the American income distribution. American Economic Review, 48: 261-269.
- Wingo, D. R. (1984). Fitting Three-parameter log-normal models by numerical global optimization – an improved algorithm, Computation Statistical Data Analysis.
- Yuan, P. (1933). On the logarithmic frequency distribution and semi-logarithmic correlation surface, annals of mathematical statistics.
- Zelterman, D. (1987). Parameter estimation in the generalized logistic distribution, Computational Statistics & Data Analysis, 5: 177–184.