طراحی و شبیهسازی تقویتکننده کم نویز باند باریک با توان مصرفی پایین در فناوری 180 نانومترCMOS
محورهای موضوعی : انرژی های تجدیدپذیر
1 - کارشناس ارشد - شرکت صبا نجف آباد، نجف آباد، ایران
کلید واژه: نویز, بهره, تطبیق امپدانس, تقویت کننده کم نویز,
چکیده مقاله :
خلاصه: در این مقاله، طراحی تقویتکننده کم نویز (LNA) با القاگر در سورس در فرکانس 2.4GHz ارائه شده است. فناوری استفاده شده در طراحی این مقاله TSMC 0.18um CMOS است. ساختار کسکود باعث کاهش توان مصرفی در مدار میشود[1]؛ از طرفی مزیت استفاده از ساختار کسکود، افزایش امپدانس خروجی در مدار است که این افزایش امپدانس، افزایش بهره مدار را به دنبال دارد. مدار ارائهشده یک تقویتکننده کم نویز کسکود شده با القاگر در سورس به همراه یک شبکهی تطبیق امپدانس افزودهشده در ورودی و خروجی است؛ که باعث شده تا عدد نویز و توان مصرفی به ترتیب برابر با 1.6dB و 2.1mW به دست آیند. افزودن شبکه تطبیق منجر به یک درجه آزادی بیشتر برای بهبود عدد نویز و توان مصرفی در مدار و از طرفی کاهش مساحت داخلی تراشه شده است. در المان های دیگری که به مدار اضافه شده است علاوه بر اینکه ملاحظات کاهش توان و عدد نویز در نظر گرفته شده است؛ باعث شده بهره مدار و ضریب انعکاس در ورودی در فرکانس موردنظر به ترتیب برابر با 20dB و -12dB به دست آیند.
Abstrac: In this paper presented discussed to design a low noise amplifier (LNA) with inductor at source in TSMC 0.18um CMOS technology to 2.4 GHz. Cascode structure cause reduces the power consumption of the circuit[1]; the advantage of using cascade structure, increase the output impedance of the circuit impedance increases, increasing the circuit to follow. The circuit presented in this article a low noise amplifier cascoded with inductor in the source along with impedance matching network added in the input and output; and led to 1.6db noise figure and power consumption of 2.1mw achieved, respectively. Add matching networks to a greater degree of freedom in circuit for improved noise figure and power consumption and chip internal area is also reduced. Add the rest of the circuit in addition to reducing power and noise figure considerations in mind we have been able in the desired frequency and reflection coefficient in the input circuit respectively 20db and -12db achieved.
[1] S. Toofan, A. Rahmati, A. Abrishamifar, G. R. Lahiji, "A low-power and high-gain fully integrated CMOS LNA", Microelectronics Journal, Vol. 38, No. 12, pp. 1150-1155, Dec. 2007 (doi:10.1016/j.mejo.2007.10.001).
[2] B. Razavi, "RF microelectronics", New York:Paul Boger, vol. 2, 2011.
[3] L. H. Lu, H. H. Hsieh, Y. S. Wang, "A compact 2.4/5.2-GHz CMOS dual-band low-noise amplifier", IEEE Microwave and Wireless Components Letters, Vol. 15, No. 10, pp. 685-687, Oct. 2005 (doi:10.1109/LMWC.2005.856845).
[4] R. Kundu, A. Pandey, S. Chakraborty, V. Nath, "A CMOS low noise amplifier based on common source technique for ISM band application", Microsystem Technologies, pp. 2707-2714, Vol. 22, No. 11, Nov. 2016 (doi:10.1007/s00542-015-2550-3).
[5] A. V. Do, C. C. Boon, M. A. Do, K. S. Yeo, A. Cabuk, "A subthreshold low-noise amplifier optimized for ultra-low-power applications in the ISM band", IEEE Trans. on Microwave Theory and Techniques, Vol. 56, No. 2, pp. 286-292, Feb. 2008 (doi:10.1109/TMTT.2007.913366).
[6] Z. Wang, K. S. Yeo, K. Ma, Z. Wang, "An inductorless and capacitorless LNA with noise and distortion cancelation", Proceeding of the IEEE/ICCRD, vol. 3, pp. 270-274, March 2011 (doi:10.1109/ICCRD.2011.5764192).
[7] C. C. Chen, Y. C. Wang, "3.1–10.6 GHz ultra-wideband LNA design using dual-resonant broadband matching technique," AEU-International Journal of Electronics and Communications, Vol. 67, No. 6, pp. 500-503, June 2013 (doi:10.1016/j.aeue.2012.11.007).
[8] H. Rastegar, S. Saryazdi, A. Hakimi, "A low power and high linearity UWB low noise amplifier (LNA) for 3.1–10.6 GHz wireless applications in 0.13 μm CMOS process," Microelectronics Journal, Vol. 44, No. 3, pp. 201-209, 2013 (doi:10.1016/j.mejo.2013.01.004).
[9] Y.S. Lin, C.C. Wang, J.H. Lee, "Design and implementation of A 1.9–22.5 GHz CMOS wideband LNA with dual‐RLC‐branch wideband input and output matching networks", Microwave and Optical Technology Letters, Vol. 56, No. 3, pp. 677-684, March 2014 (doi:10.1002/mop.28186).
[10] N. Chamanpira, S. M. A. Zanjani, M. Dolatshahi, “Design and simulation of a new sample and hold circuit with a resulation of 12-bit and a sampling rate of 1 GS/s using a dual sampling technique”, Journal of Intelligent Procedures in Electrical Technology, Vol. 9, No. 34, pp. 3-10, Summer 2018.
[11] F. R. Shahroury, C.-Y. Wu, "A 1-V RF-CMOS LNA design utilizing the technique of capacitive feedback matching network", Integration, Vol. 42, No. 1, pp. 83-88, Jan. 2009 (doi:10.1016/j.vlsi.2008.09.007).
[12] A. Van der Ziel, Noise in solid state devices and circuits, Wiley-Interscience, 1986.
[13] I. Bastos, L. Oliveira, J. Goes, M. Silva, "A low power balun LNA with active loads for gain and noise figure optimization", Analog Integrated Circuits and Signal Processing, Vol. 81, No. 3, pp. 693-702, Dec. 2014 (doi:10.1007/s10470-014-0426-6).
[14] T. Sasilatha, J. Raja, "A 1 V, 2.4 GHz low power CMOS common source LNA for WSN applications", AEU- International Journal of Electronics and Communications, Vol. 64, No. 10, pp. 940-946, Oct. 2010 (doi:10.1016/j.aeue.2009.07.009).
[15] V. Vidojkovic, J. Tang, E. Hanssen, A. Leeuwenburgh, A. Van Roermund, "Fully-integrated DECT/Bluetooth multi-band LNA in 0.18 μm CMOS", Proceeding of the IEEE/ISCAS, Vol. 1, pp. I-565-8, Vancouver, BC, Canada, May 2004 (doi:10.1109/ISCAS.2004.1328257).
[16] S. K. Alam, J. DeGroat, " A 2 GHz variable gain low noise amplifier in 0.18-μm CMOS", Analog Integrated Circuits and Signal Processing, Vol. 56, No. 1-2, pp. 37-42, Aug. 2008 (doi:10.1007/s10470-007-9080-6).
[17] F. Akbar, M. Atarodi, S. Saeedi, "Design method for a reconfigur able CMOS LNA with input tuning and active balun", AEU-International Journal of Electronics and Communications, Vol. 69, No. 1, pp. 424-431, 2015 (doi:10.1016/j.aeue.2014.10.019).
[18] B. Shi, M. Y. W. Chia, "A 3.1-10.6 GHz RF front-end for multiband UWB wireless receivers", Proceeding of the IEEE/RFIC, pp. 343-346, Long Beach, CA, USA, Aug. 2005 (doi: 10.1109/RFIC.2005.1489804).
[19] I. Mohammadi, A. Sahafi, J. Sobhi, Z. D. Koozehkanani, "A linear, low power, 2.5-dB NF LNA for UWB application in a 0.18 μm CMOS", Microelectronics Journal, Vol. 46, No. 12, pp. 1398-1408, Dec. 2015 (doi:10.1016/j.mejo.2015.09.003).
[20] X. Yang, Q. Cheng, L.-f. Lin, W.-w. Huang, C.-d. Ling, "Design of low power low noise amplifier for portable electrocardiogram recording system applications", Proceeding of the IEEE/ASID, pp. 89-92, Xiamen, China, June 2011 (doi: 10.1109/ASID.2011.5967423).
[21] N.M. Neihart, J. Brown, X. Yu, "A dual-band 2.45/6 GHz CMOS LNA utilizing a dual-resonant transformer-based matching network", IEEE Trans. on Circuits and Systems I: Regular Papers, Vol. 59, No. 8, pp. 1743-1751, Aug. 2012 (doi:10.1109/TCSI.2011.2180436).
_||_[1] S. Toofan, A. Rahmati, A. Abrishamifar, G. R. Lahiji, "A low-power and high-gain fully integrated CMOS LNA", Microelectronics Journal, Vol. 38, No. 12, pp. 1150-1155, Dec. 2007 (doi:10.1016/j.mejo.2007.10.001).
[2] B. Razavi, "RF microelectronics", New York:Paul Boger, vol. 2, 2011.
[3] L. H. Lu, H. H. Hsieh, Y. S. Wang, "A compact 2.4/5.2-GHz CMOS dual-band low-noise amplifier", IEEE Microwave and Wireless Components Letters, Vol. 15, No. 10, pp. 685-687, Oct. 2005 (doi:10.1109/LMWC.2005.856845).
[4] R. Kundu, A. Pandey, S. Chakraborty, V. Nath, "A CMOS low noise amplifier based on common source technique for ISM band application", Microsystem Technologies, pp. 2707-2714, Vol. 22, No. 11, Nov. 2016 (doi:10.1007/s00542-015-2550-3).
[5] A. V. Do, C. C. Boon, M. A. Do, K. S. Yeo, A. Cabuk, "A subthreshold low-noise amplifier optimized for ultra-low-power applications in the ISM band", IEEE Trans. on Microwave Theory and Techniques, Vol. 56, No. 2, pp. 286-292, Feb. 2008 (doi:10.1109/TMTT.2007.913366).
[6] Z. Wang, K. S. Yeo, K. Ma, Z. Wang, "An inductorless and capacitorless LNA with noise and distortion cancelation", Proceeding of the IEEE/ICCRD, vol. 3, pp. 270-274, March 2011 (doi:10.1109/ICCRD.2011.5764192).
[7] C. C. Chen, Y. C. Wang, "3.1–10.6 GHz ultra-wideband LNA design using dual-resonant broadband matching technique," AEU-International Journal of Electronics and Communications, Vol. 67, No. 6, pp. 500-503, June 2013 (doi:10.1016/j.aeue.2012.11.007).
[8] H. Rastegar, S. Saryazdi, A. Hakimi, "A low power and high linearity UWB low noise amplifier (LNA) for 3.1–10.6 GHz wireless applications in 0.13 μm CMOS process," Microelectronics Journal, Vol. 44, No. 3, pp. 201-209, 2013 (doi:10.1016/j.mejo.2013.01.004).
[9] Y.S. Lin, C.C. Wang, J.H. Lee, "Design and implementation of A 1.9–22.5 GHz CMOS wideband LNA with dual‐RLC‐branch wideband input and output matching networks", Microwave and Optical Technology Letters, Vol. 56, No. 3, pp. 677-684, March 2014 (doi:10.1002/mop.28186).
[10] N. Chamanpira, S. M. A. Zanjani, M. Dolatshahi, “Design and simulation of a new sample and hold circuit with a resulation of 12-bit and a sampling rate of 1 GS/s using a dual sampling technique”, Journal of Intelligent Procedures in Electrical Technology, Vol. 9, No. 34, pp. 3-10, Summer 2018.
[11] F. R. Shahroury, C.-Y. Wu, "A 1-V RF-CMOS LNA design utilizing the technique of capacitive feedback matching network", Integration, Vol. 42, No. 1, pp. 83-88, Jan. 2009 (doi:10.1016/j.vlsi.2008.09.007).
[12] A. Van der Ziel, Noise in solid state devices and circuits, Wiley-Interscience, 1986.
[13] I. Bastos, L. Oliveira, J. Goes, M. Silva, "A low power balun LNA with active loads for gain and noise figure optimization", Analog Integrated Circuits and Signal Processing, Vol. 81, No. 3, pp. 693-702, Dec. 2014 (doi:10.1007/s10470-014-0426-6).
[14] T. Sasilatha, J. Raja, "A 1 V, 2.4 GHz low power CMOS common source LNA for WSN applications", AEU- International Journal of Electronics and Communications, Vol. 64, No. 10, pp. 940-946, Oct. 2010 (doi:10.1016/j.aeue.2009.07.009).
[15] V. Vidojkovic, J. Tang, E. Hanssen, A. Leeuwenburgh, A. Van Roermund, "Fully-integrated DECT/Bluetooth multi-band LNA in 0.18 μm CMOS", Proceeding of the IEEE/ISCAS, Vol. 1, pp. I-565-8, Vancouver, BC, Canada, May 2004 (doi:10.1109/ISCAS.2004.1328257).
[16] S. K. Alam, J. DeGroat, " A 2 GHz variable gain low noise amplifier in 0.18-μm CMOS", Analog Integrated Circuits and Signal Processing, Vol. 56, No. 1-2, pp. 37-42, Aug. 2008 (doi:10.1007/s10470-007-9080-6).
[17] F. Akbar, M. Atarodi, S. Saeedi, "Design method for a reconfigur able CMOS LNA with input tuning and active balun", AEU-International Journal of Electronics and Communications, Vol. 69, No. 1, pp. 424-431, 2015 (doi:10.1016/j.aeue.2014.10.019).
[18] B. Shi, M. Y. W. Chia, "A 3.1-10.6 GHz RF front-end for multiband UWB wireless receivers", Proceeding of the IEEE/RFIC, pp. 343-346, Long Beach, CA, USA, Aug. 2005 (doi: 10.1109/RFIC.2005.1489804).
[19] I. Mohammadi, A. Sahafi, J. Sobhi, Z. D. Koozehkanani, "A linear, low power, 2.5-dB NF LNA for UWB application in a 0.18 μm CMOS", Microelectronics Journal, Vol. 46, No. 12, pp. 1398-1408, Dec. 2015 (doi:10.1016/j.mejo.2015.09.003).
[20] X. Yang, Q. Cheng, L.-f. Lin, W.-w. Huang, C.-d. Ling, "Design of low power low noise amplifier for portable electrocardiogram recording system applications", Proceeding of the IEEE/ASID, pp. 89-92, Xiamen, China, June 2011 (doi: 10.1109/ASID.2011.5967423).
[21] N.M. Neihart, J. Brown, X. Yu, "A dual-band 2.45/6 GHz CMOS LNA utilizing a dual-resonant transformer-based matching network", IEEE Trans. on Circuits and Systems I: Regular Papers, Vol. 59, No. 8, pp. 1743-1751, Aug. 2012 (doi:10.1109/TCSI.2011.2180436).