بررسی بهکارگیری پوشش های ضدبازتاب در سلول های خورشیدی لایه نازک CZTS برای افزایش جذب نور: بهینه سازی با استفاده از روش FDTD
محورهای موضوعی : انرژی های تجدیدپذیرمینا میرزایی 1 , جواد حسن زاده کلاشمی 2 , علی عبداله زاده ضیابری 3 , مهدی میرزایی 4
1 - دانشکده علوم، گروه فیزیک- واحد تاکستان، دانشگاه آزاد اسلامی، تاکستان، ایران
2 - آزمایشگاه تحقیقاتی نانو- واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، گیلان، ایران
3 - آزمایشگاه تحقیقاتی نانو- واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، گیلان، ایران
4 - دانشکده علوم پایه- واحد میانه، دانشگاه آزاد اسلامی، میانه، ایران
کلید واژه: بازده کوانتومی خارجی, پوشش لایه ضدبازتاب, تفاضل محدود درحوزهی زمان, سلول های خورشیدی CZTS,
چکیده مقاله :
در چند سال گذشته، سلول های خورشیدی مبتنی بر سولفید قلع روی مس (CZTS) به دلیل ضریب جذب و شکاف باند مناسب، کم هزینه بودن، رفتار غیر رادیواکتیو و سازگار با محیط زیست، جزو سلول های خورشیدی لایه نازک بسیار امیدوار کننده هستند. با این حال، سلول های CZTS بازدهی ضعیفی نشان می دهند و شناسایی کمبودها و ایجاد پیشرفت لازم است. در این مقاله، استفاده از پوشش های مختلف لایه های ضد بازتاب (ARC) در سطح بالای سلول خورشیدی پیشنهاد شده است. حداقل سازی بازتاب برای بهینه سازی ضخامت لایه های ضد بازتاب با استفاده از نرم افزار لومریکال انجام شده است. چگالی جریان اتصال کوتاه از 48/18 میلی-آمپر بر سانتیمتر مربع برای سلول های خورشیدی بدون پوشش ضد بازتاب به 76/20 میلی-آمپر بر سانتیمتر مربع برای سلول هایی که دارای پوشش لایه ضدبازتاب MgF2 هستند افزایش می یابد.
In the few past years, Solar cells based on Cu2ZnSnS4 (CZTS) are very promising thin-film solar cells due to their appropriate absorption coefficient and optical band gap, low-cost, non-radioactive and environmental friendly behavior. However, CZTS devices show poor efficiency and identifying deficiencies and making improvements is necessary. In the present study, various anti-reflection coatings at the top surface of the solar cell were proposed. Minimization of the reflectance is carried out to optimize the thickness of ARC layers using Lumerical software. The density of the short-circuit photocurrent increases from 18.4 mA.cm−2 for solar cells without an antireflection coating to 36 mA.cm−2 for those with MgF2 layer coating.
[1] R. Nitsche, D. F. Sargent, P. Wild, "Crystal growth of quaternary 122464 chalcogenides by iodine vapor transport", Journal of Crystal Growth, vol. 1, pp. 52-53, Oct. 1966 (doi:10.1016/0022-0248(67)90009-7).
[2] K. Ito, T. Nakazawa, "Electrical and optical properties of stannite-type quaternary", Japaneese Journal of Applied Physics, vol. 27, pp. 2094-2097, Sep. 1988.
[3] X. Song, X. Ji, M. Li,W. Lin, X. Luo, H. Zhang, "A review on development prospect of CZTS basedthin film solar cells", International Journal of Photoenergy, vol. 2014, May. 2014 (doi:10.1155/2014/613173).
[4] M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopikadis, X. Hao, "Solar cell efficiency tables (version 56)", Progress in Photovoltaics: Research and Applications, vol. 28, pp. 629-638, June 2020 (doi:10.1002/pip.3303).
[5] K. Islam, A. Alnuaimi, H. Ally, Ammar Nayfeh, "ITO, Si3N4 and ZnO:Al - Simulation of different anti-reflection coatings (ARC) for thin film a-Si:H solar cells", Institute of Science and Technology, pp. 673-676, 2013 (doi: 10.1109/EMS.2013.112).
[6] Z.I. Alexieva, Z.S. Nenova, V.S. Bakardjieva, M.M. Milanova, H.M. Dikov, "Antireflection coatings for GaAs solar cell applications", Journal of Physics: Conference Series, 2010 (doi:10.1088/1742-6596/223/1/012045).
[7] M. Moustapha Diop, A. Diaw, N. Mbengue, O. Ba, M. Diagne, O.A. Niasse, B. Ba, J. Sarr, "Optimization and modeling of antireflective layers for silicon solar cells: In search of optimal materials", Materials Sciences and Applications, pp. 705-722, July 2018 (doi:10.4236/msa.2018.98051).
[8] H. Benzetta, M. Abderrezek, M.E. Djeghlal, "Numerical analysis of potential buffer layer for Cu2ZnSnS4 (CZTS) solar cells", Optik, vol. 204, Feb. 2020 (doi:10.1016/j.ijleo.2019.164155).
[9] K.S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media", IEEE Trans. on Antennasand Propagation , vol. AP-14, pp. 302-307, May. 1966.
[10] J.R. Nagel, "Advanced methods for ligth trapping in optically thin silicon solar cells", Electrical and Computer Engineering, Dec. 2011 (https://collections.lib.utah.edu/ark:/87278/s6qc0j64).
[11] K. N’Konou, P. Torchio, "Optical absorption modeling of plasmonic organic solar cells embedding Ag-SiO2 core-shell nanoparticles", Noble Metal-Metal Oxide Hybrid Nanoparticles: Fundamentals and Applications, pp. 265-282, 2019 (doi:10.1016/B978-0-12-814134-2.00013-9).
[12] H. Jia, J. Li, Z. Fang, M. Li, "A new FDTD scheme for Maxwell’s equations in Kerr-type nonlinear media", Springer Science+Business Media, LLC, Sept. 2018 (doi:10.1007/s11075-018-0602-3).
[13] S, Royanian, A. Abdolahzadeh Ziabari, R. Yousefi1, "Efficiency enhancement of ultra-thin CIGS Solar Cells using bandgap grading and embedding Au plasmonic nanoparticles", Plasmonics, vol. 15, pp. 1173-1182, Feb. 2020 (doi:10.1007/s11468-020-01138-2).
[14] M. Mirzaei, J. Hasanzadeh, A. Abdolahzadeh Ziabari, "Efficiency enhancement of CZTS solar cells using Al plasmonic nanoparticles: The effect of size and period of nanoparticles", Journal of Electronic Materials, vol. 49, pp. 7168-7178, Oct. 2020 (doi:10.1007/s11664-020-08524-w).
[15] B.J. Trześniewski, I.A. Digdaya, T. Nagaki, S. Ravishankar, I. Herraiz-Cardona, D.A. Vermaas, A. Longo, S. Gimenez, W.A. Smith, " Near-complete suppression of surface losses and total internal quantum efficiency in BiVO4 photoanodes", Energy and Environmental Science, vol: 10, pp. 1517-1529, May. 2017 (doi:10.1039/c6ee03677e).
[16] E.D. Palik, "In handbook of optical constants of solids", Academic Press, vol. 3, New York, 1998.
[17] H. Zhao, C. Persson, "Optical properties of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4", Thin Solid Films, vol. 519, pp. 7508-7512, Jan. 2011 (doi:10.1016/j.tsf.2010.12.217).
[18] V. Tunuguntla, W.C. Chen, P.H. Shih, I. Shown, Y.R. Lin, J.S. Hwang, C.H. Lee, L.C. Chen, K.H. Chen, "A nontoxic solvent based sol-gel Cu2ZnSnS4 thin film for high efficiency and scalable low-cost photovoltaic cells", Journal of Materials Chemistry A, vol. 3, pp. 15324-15330, May. 2015 (doi:10.1039/c5ta02833g).
[19] G. K. Dalapati1, S. Zhuk, S. Masudy-Panah et al, "Impact of molybdenum out diffusion and interface quality on the performance of sputter grown CZTS based solar cells", Scientific Reports, vol. 7, pp. 1-12, May. 2017 (doi:10.1038/s41598-017-01605-7).
_||_[1] R. Nitsche, D. F. Sargent, P. Wild, "Crystal growth of quaternary 122464 chalcogenides by iodine vapor transport", Journal of Crystal Growth, vol. 1, pp. 52-53, Oct. 1966 (doi:10.1016/0022-0248(67)90009-7).
[2] K. Ito, T. Nakazawa, "Electrical and optical properties of stannite-type quaternary", Japaneese Journal of Applied Physics, vol. 27, pp. 2094-2097, Sep. 1988.
[3] X. Song, X. Ji, M. Li,W. Lin, X. Luo, H. Zhang, "A review on development prospect of CZTS basedthin film solar cells", International Journal of Photoenergy, vol. 2014, May. 2014 (doi:10.1155/2014/613173).
[4] M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopikadis, X. Hao, "Solar cell efficiency tables (version 56)", Progress in Photovoltaics: Research and Applications, vol. 28, pp. 629-638, June 2020 (doi:10.1002/pip.3303).
[5] K. Islam, A. Alnuaimi, H. Ally, Ammar Nayfeh, "ITO, Si3N4 and ZnO:Al - Simulation of different anti-reflection coatings (ARC) for thin film a-Si:H solar cells", Institute of Science and Technology, pp. 673-676, 2013 (doi: 10.1109/EMS.2013.112).
[6] Z.I. Alexieva, Z.S. Nenova, V.S. Bakardjieva, M.M. Milanova, H.M. Dikov, "Antireflection coatings for GaAs solar cell applications", Journal of Physics: Conference Series, 2010 (doi:10.1088/1742-6596/223/1/012045).
[7] M. Moustapha Diop, A. Diaw, N. Mbengue, O. Ba, M. Diagne, O.A. Niasse, B. Ba, J. Sarr, "Optimization and modeling of antireflective layers for silicon solar cells: In search of optimal materials", Materials Sciences and Applications, pp. 705-722, July 2018 (doi:10.4236/msa.2018.98051).
[8] H. Benzetta, M. Abderrezek, M.E. Djeghlal, "Numerical analysis of potential buffer layer for Cu2ZnSnS4 (CZTS) solar cells", Optik, vol. 204, Feb. 2020 (doi:10.1016/j.ijleo.2019.164155).
[9] K.S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media", IEEE Trans. on Antennasand Propagation , vol. AP-14, pp. 302-307, May. 1966.
[10] J.R. Nagel, "Advanced methods for ligth trapping in optically thin silicon solar cells", Electrical and Computer Engineering, Dec. 2011 (https://collections.lib.utah.edu/ark:/87278/s6qc0j64).
[11] K. N’Konou, P. Torchio, "Optical absorption modeling of plasmonic organic solar cells embedding Ag-SiO2 core-shell nanoparticles", Noble Metal-Metal Oxide Hybrid Nanoparticles: Fundamentals and Applications, pp. 265-282, 2019 (doi:10.1016/B978-0-12-814134-2.00013-9).
[12] H. Jia, J. Li, Z. Fang, M. Li, "A new FDTD scheme for Maxwell’s equations in Kerr-type nonlinear media", Springer Science+Business Media, LLC, Sept. 2018 (doi:10.1007/s11075-018-0602-3).
[13] S, Royanian, A. Abdolahzadeh Ziabari, R. Yousefi1, "Efficiency enhancement of ultra-thin CIGS Solar Cells using bandgap grading and embedding Au plasmonic nanoparticles", Plasmonics, vol. 15, pp. 1173-1182, Feb. 2020 (doi:10.1007/s11468-020-01138-2).
[14] M. Mirzaei, J. Hasanzadeh, A. Abdolahzadeh Ziabari, "Efficiency enhancement of CZTS solar cells using Al plasmonic nanoparticles: The effect of size and period of nanoparticles", Journal of Electronic Materials, vol. 49, pp. 7168-7178, Oct. 2020 (doi:10.1007/s11664-020-08524-w).
[15] B.J. Trześniewski, I.A. Digdaya, T. Nagaki, S. Ravishankar, I. Herraiz-Cardona, D.A. Vermaas, A. Longo, S. Gimenez, W.A. Smith, " Near-complete suppression of surface losses and total internal quantum efficiency in BiVO4 photoanodes", Energy and Environmental Science, vol: 10, pp. 1517-1529, May. 2017 (doi:10.1039/c6ee03677e).
[16] E.D. Palik, "In handbook of optical constants of solids", Academic Press, vol. 3, New York, 1998.
[17] H. Zhao, C. Persson, "Optical properties of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4", Thin Solid Films, vol. 519, pp. 7508-7512, Jan. 2011 (doi:10.1016/j.tsf.2010.12.217).
[18] V. Tunuguntla, W.C. Chen, P.H. Shih, I. Shown, Y.R. Lin, J.S. Hwang, C.H. Lee, L.C. Chen, K.H. Chen, "A nontoxic solvent based sol-gel Cu2ZnSnS4 thin film for high efficiency and scalable low-cost photovoltaic cells", Journal of Materials Chemistry A, vol. 3, pp. 15324-15330, May. 2015 (doi:10.1039/c5ta02833g).
[19] G. K. Dalapati1, S. Zhuk, S. Masudy-Panah et al, "Impact of molybdenum out diffusion and interface quality on the performance of sputter grown CZTS based solar cells", Scientific Reports, vol. 7, pp. 1-12, May. 2017 (doi:10.1038/s41598-017-01605-7).