الگوریتم جدید مکانیابی گرههای شبکه MANET بهطور مستقل از GPS
محورهای موضوعی : انرژی های تجدیدپذیرحامد احمدیان یزدی 1 , محمدعلی پورمینا 2 , افروز حق بین 3
1 - دانشکده مهندسی مکانیک، برق و کامپیوتر- واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - دانشکده مهندسی مکانیک، برق و کامپیوتر- واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - دانشکده مهندسی مکانیک، برق و کامپیوتر- واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: شبکه اقتضایی, مقیاسبندی چندبعدی, دیجسترا, سیستم موقعیتیاب جهانی, مکانیابی مستقل,
چکیده مقاله :
در این مقاله الگوریتم مکانیابی گرههای شبکه اقتضایی براساس تبادل سیگنالهای رادیویی بین گرههای شبکه و بهطور مستقل از سیستم موقعیتیاب جهانی (GPS)ارائه میشود. در روشهای مرسوم مکانیابی، مکان گرهها در یک شبکه در دو مرحله تخمین زده میشود. در مرحلهی اول هر گره مکان محلی خود و همسایگانش با استفاده از روش مقیاسبندی چند-بعدی (MDS) محاسبه و در مرحلهی دوم، مکان محلی گرهها به یک مکان سراسری واحد تبدیل میگردد. در این روشها از مکان گرههای مکانیابی بهعنوان مرجع چرخش برای گرههای بعدی استفاده می شود که این مکان محاسبهشده دقیق نیست. همچنین روش دیجسترا نیز روش دقیقی نبوده، خطای موجود در هر گره به گرههای بعدی انتقال مییابد. بنابراین، خطای موقعیت یابی در گرههای نهایی که مکانیابی میشوند، بسیار زیاد است. در الگوریتم پیشنهادی، با استفاده از الگوریتم بهینه، از مکانهای تخمین زدهشده در روش MDS بهعنوان تخمین اولیه استفاده میشود و این خطاها بهگونهای کاهش مییابد تا کل شبکه به یک حالت پایدار برسد. نتایج شبیهسازیها نشان میدهد که الگوریتم پیشنهادی میتواند نسبت به الگوریتم MDS مشکل انتشار خطا را حل کرده و با تحرک مجدد گرههای موجود دقت و پایداری مناسبی را با کمترین افزایش سربار و بار پیچیدگی محاسباتی پائین حل میکند.
In this paper, we present the new positioning algorithm of ad-hoc network nodes based on the exchange of radio signals among nodes. The proposed algorithm is independent of GPS data. In conventional positioning methods, the location of nodes in a network is estimated in two steps. In the first step, each node calculates its local location and neighbors based on the Multi-dimensional scaling (MDS) method. In the second step, the local location of the nodes transforms into a unique global location. In these methods, the location of the positioned nodes is used as a rotation reference for the next nodes though this calculated location is not accurate. Also, the Dijkstra method is not exact either and produces errors which transmitted to the next nodes. Therefore, the positioning error is very high in the final nodes positioned. In the proposed algorithm, using the optimal algorithm, the estimated locations in the conventional method use as initial estimates, and these errors reduce so that the whole network reaches a stable state. The simulation results show that the proposed algorithm can solve the error propagation problem compared to the MDS algorithm and achieved the appropriate accuracy and stability with the least increase of overhead and low computational complexity load by mobility of the existing nodes.
[1] X. Bai, W. Xiaohui, B. Sen, "Efficient receiver-based flooding in mobile ad hoc networks", Wireless Networks, vol. 26, no. 1, pp. 17-31, Jan. 2020 (doi: 10.1007/s11276-018-1779-z).
[2] R. K. Jaiswal, "Position-based routing protocol using Kalman filter as a prediction module for vehicular Ad Hoc networks", Computers and Electrical Engineering, vol. 83, Article Paper: 106599, May. 2020 (doi: 10.1016/j.compeleceng.2020.106599).
[3] S. Cao, Q. Honglei, C. Li, H. Yingtao, "Multi-Slots Joint MLE Relative Navigation Algorithm Based on INS/JTIDS/BA for Datalink Network", IEEE Access, vol. 8, pp. 136795-136807, Jul. 2020 (doi: 10.1109/ACCESS.2020.3011138).
[4] V.R. Andres, A.S. Fabian, C. Sanchez, B. Arpi, L.I. Minchala "Experimental evaluation of RSSI-based positioning system with low-cost LoRa devices", Ad Hoc Networks, Aug. 2020 (doi: 10.1016/j.adhoc.2020.102168).
[5] S. Salari, I.M. Kim, F. Chan "Distributed cooperative localization for mobile wireless sensor networks", IEEE Wireless Communications Letters, vol. 7, no. 1, pp.18-21, Sept. 2017 (doi: 10.1109/LWC.2017.2750685).
[6] H. Huang, Y.R. Zheng, "Node localization with AoA assistance in multi-hop underwater sensor networks", Ad Hoc Networks, vol. 78, pp.32-41, Sep. 2018 (doi: 10.1016/j.adhoc.2018.05.005).
[7] S. Tomic, M. Beko, R. Dinis, P. Montezuma "Distributed algorithm for target localization in wireless sensor networks using RSS and AoA measurements", Pervasive and Mobile Computing, vol. 37, pp. 63-77, June 2017 (doi: 10.1016/j.pmcj.2016.09.013).
[8] W. Wang, Y. Zhang, L. Tian, "TOA-based NLOS error mitigation algorithm for 3D indoor localization", China Communications, vol. 17, no. 1, pp. 63-72, Jan. 2020 (doi: 10.23919/JCC.2020.01.005).
[9] Y. Hlaing, N. Maung, "Time-difference-of-arrival (TDoA) based wireless indoor localization using an effective hybrid time synchronization", Proceeding of the ICCA, pp. 125-130, 2019.
[10] A.R. Ansari, N. Saeed, M.I. Haq, S. Cho, "Accurate 3D localization method for public safety applications in vehicular Ad-Hoc networks", IEEE Access vol. 6, pp. 20756-20763, April 2018 (doi: 10.1109/ACCESS.2018.2825371).
[11] Y. Zhang, S. Xing, Y. Zhu, F. Yan, L.Shen, "RSS-based localization in WSNs using gaussian mixture model via semidefinite relaxation", IEEE Communications Letter, vol. 21, no. 6, Feb. 2017 (doi: 10.1109/LCOMM.2017.2666157).
[12] A. Coluccia, A. Fascista, "On the hybrid TOA/RSS range estimation in wireless sensor networks", IEEE Trans. Communications on Wireless, vol. 17, no. 1, pp. 361-371, Oct. 2017 (doi: 10.1109/TWC.2017.2766628).
[13] H. Xiao, H. Zhang, Z. Wang, T. Aaron Gulliver, "An RSSI Based DV-Hop algorithm for wireless sensor networks", Proceeding of the IEEE/PACRIM, pp.1-6, Victoria, BC, Canada, Aug. 2017 (doi: 10.1109/PACRIM.2017.8121929)
[14] S. Wang, X. Jiang, "Three-dimensional cooperative positioning in vehicular Ad-hoc networks", IEEE Trans. on Intelligent Transportation Systems, vol. 22, no. 2, pp. 937-950, Feb. 2021 (doi: 10.1109/TITS.2019.2961452).
[15] S. Nasir, H. Nam, T. Y. Al-Naffouri, M. Alouini, "A state-of-the-art survey on multidimensional scaling-based localization techniques", IEEE Communications Surveys and Tutorials, vol. 21, no. 4, pp. 3565-3583, June 2019 (doi: 10.1109/COMST.2019.2921972).
[16] M. Hamaoui, "Non-iterative MDS method for collaborative network localization with sparse range and pointing measurements", IEEE Trans. on Signal Processing, vol. 67, no. 3, pp.568-578, Nov. 2018 (doi: 10.1109/TSP.2018.2879623).
_||_[1] X. Bai, W. Xiaohui, B. Sen, "Efficient receiver-based flooding in mobile ad hoc networks", Wireless Networks, vol. 26, no. 1, pp. 17-31, Jan. 2020 (doi: 10.1007/s11276-018-1779-z).
[2] R. K. Jaiswal, "Position-based routing protocol using Kalman filter as a prediction module for vehicular Ad Hoc networks", Computers and Electrical Engineering, vol. 83, Article Paper: 106599, May. 2020 (doi: 10.1016/j.compeleceng.2020.106599).
[3] S. Cao, Q. Honglei, C. Li, H. Yingtao, "Multi-Slots Joint MLE Relative Navigation Algorithm Based on INS/JTIDS/BA for Datalink Network", IEEE Access, vol. 8, pp. 136795-136807, Jul. 2020 (doi: 10.1109/ACCESS.2020.3011138).
[4] V.R. Andres, A.S. Fabian, C. Sanchez, B. Arpi, L.I. Minchala "Experimental evaluation of RSSI-based positioning system with low-cost LoRa devices", Ad Hoc Networks, Aug. 2020 (doi: 10.1016/j.adhoc.2020.102168).
[5] S. Salari, I.M. Kim, F. Chan "Distributed cooperative localization for mobile wireless sensor networks", IEEE Wireless Communications Letters, vol. 7, no. 1, pp.18-21, Sept. 2017 (doi: 10.1109/LWC.2017.2750685).
[6] H. Huang, Y.R. Zheng, "Node localization with AoA assistance in multi-hop underwater sensor networks", Ad Hoc Networks, vol. 78, pp.32-41, Sep. 2018 (doi: 10.1016/j.adhoc.2018.05.005).
[7] S. Tomic, M. Beko, R. Dinis, P. Montezuma "Distributed algorithm for target localization in wireless sensor networks using RSS and AoA measurements", Pervasive and Mobile Computing, vol. 37, pp. 63-77, June 2017 (doi: 10.1016/j.pmcj.2016.09.013).
[8] W. Wang, Y. Zhang, L. Tian, "TOA-based NLOS error mitigation algorithm for 3D indoor localization", China Communications, vol. 17, no. 1, pp. 63-72, Jan. 2020 (doi: 10.23919/JCC.2020.01.005).
[9] Y. Hlaing, N. Maung, "Time-difference-of-arrival (TDoA) based wireless indoor localization using an effective hybrid time synchronization", Proceeding of the ICCA, pp. 125-130, 2019.
[10] A.R. Ansari, N. Saeed, M.I. Haq, S. Cho, "Accurate 3D localization method for public safety applications in vehicular Ad-Hoc networks", IEEE Access vol. 6, pp. 20756-20763, April 2018 (doi: 10.1109/ACCESS.2018.2825371).
[11] Y. Zhang, S. Xing, Y. Zhu, F. Yan, L.Shen, "RSS-based localization in WSNs using gaussian mixture model via semidefinite relaxation", IEEE Communications Letter, vol. 21, no. 6, Feb. 2017 (doi: 10.1109/LCOMM.2017.2666157).
[12] A. Coluccia, A. Fascista, "On the hybrid TOA/RSS range estimation in wireless sensor networks", IEEE Trans. Communications on Wireless, vol. 17, no. 1, pp. 361-371, Oct. 2017 (doi: 10.1109/TWC.2017.2766628).
[13] H. Xiao, H. Zhang, Z. Wang, T. Aaron Gulliver, "An RSSI Based DV-Hop algorithm for wireless sensor networks", Proceeding of the IEEE/PACRIM, pp.1-6, Victoria, BC, Canada, Aug. 2017 (doi: 10.1109/PACRIM.2017.8121929)
[14] S. Wang, X. Jiang, "Three-dimensional cooperative positioning in vehicular Ad-hoc networks", IEEE Trans. on Intelligent Transportation Systems, vol. 22, no. 2, pp. 937-950, Feb. 2021 (doi: 10.1109/TITS.2019.2961452).
[15] S. Nasir, H. Nam, T. Y. Al-Naffouri, M. Alouini, "A state-of-the-art survey on multidimensional scaling-based localization techniques", IEEE Communications Surveys and Tutorials, vol. 21, no. 4, pp. 3565-3583, June 2019 (doi: 10.1109/COMST.2019.2921972).
[16] M. Hamaoui, "Non-iterative MDS method for collaborative network localization with sparse range and pointing measurements", IEEE Trans. on Signal Processing, vol. 67, no. 3, pp.568-578, Nov. 2018 (doi: 10.1109/TSP.2018.2879623).