طراحی حسگر دمای کم توان مبتنی بر عملکرد زیرآستانه ترانزیستورهای نانولوله کربنی با خطای یک و نیم درجه سانتیگراد درمحدوده 30- تا 125 درجه سانتیگراد
محورهای موضوعی : انرژی های تجدیدپذیرسید محمد علی زنجانی 1 , معصومه عالی پور 2 , مصطفی پرویزی 3
1 - مرکز تحقیقات ریز شبکه های هوشمند- واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
2 - دانشکده مهندسی برق- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
3 - دانشکده مهندسی برق- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
کلید واژه: زیر آستانه, ترانزیستور اثر میدان نانولوله کربنی, کم توان, حسگر دما,
چکیده مقاله :
در این مقاله، یک حس گر دمای جدید مبتنی بر عملکرد ترانزیستورهای نانو لوله کربنی در ناحیه زیرآستانه طراحی و شبیه سازی شده است که باعث کاهش چشم گیر توان مصرفی می شود. در خروجی از یک تقویت کننده تفاضلی استفاده شده و جهت ثابت ماندن مقادیر بهره و سطح مد مشترک در اثر تغییرات دما، روشی پیشنهادی می تواند به جبران سازی این تغییرات ناشی از تغییرات دمایی در محدوده 30- الی 125+ درجه سانتی گراد پاسخ دهد. حس گر دمایی به همراه تقویت کننده آن می تواند به صورت یک سیستم بر روی سطح تراشه برای مانیتورینگ و کنترل دما استفاده گردد. همچنین در فناوری ترانزیستور اثر میدان نانو لوله کربنی (CNTFET) با ولتاژ تغذیه 5/0 ولت در ناحیه زیرآستانه توسط نرم افزار HSPICE توسط مدل نانوکربنی (CNT) 32 نانومتر شبیه سازی شده است. نتایج شبیهسازی نشان می دهد که در دماهای 30- تا 125 درجه سانتی گراد به صورت خطی و با حساسیت یک میلی ولت بر درجه، دما را اندازه گیری می کند و در دمای اتاق تنها 123 نانو وات توان مصرف می نماید. همچنین خطای اندازه گیری شده در دمای 125 درجه سانتی گراد حدود 5/2 میلی-ولت است که به معنی خطای 25/1 درجه سانتی گراد در این دما است.
In this paper, a new temperature sensor based on the performance of carbon nanotube transistors in the subthreshold region is designed and simulated which leads to reduction of power consumption. Also, a differential amplifier is used in the output of the sensor. in order to keep the values of gain and common mode level voltage due to temperature changes, a method has been proposed that can compensate for these parameters variation due to temperature variation in the range of -30 ºC to +125 ºC. The proposed temperature sensor with its amplifier can be used as a system on the chip surface for temperature monitoring and control. The proposed temperature sensor in the CNTFET carbon nanotube field effect transistor technology with a supply voltage of 0.5 V in the sub-threshold area is simulated by HSPICE software with a 32nm CNT model. The simulation results show that at proposed circuits can measure the temperature in range of -30 ºC to +125 ºC linearly with a sensitivity of 1 mV/ ºC and consumes only 123 nW at room temperature. Also, the error measured at 125 ºC is about 2.5 mV, which means an error of 1.25 ºC at this temperature.
[1] A. Bakker, J.H. Huigsing, "Micropower CMOS temperature sensor with digital output", IEEE Journal of Solid-State Circuits, vol. 31, no. 7, pp. 933-937, July 1996 (doi: 10.1109/4.508205).
[2] V. Szekely, C. Marta, Z. Kohari, M. Rencz, “CMOS sensors for on-line thermal monitoring of VLSI circuits”, IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 5, no. 3, pp. 270–276, Sept. 1997 (doi: 10.1109/92.609869)
[3] M. Tuthill, "A switched-current, switched-capacitor temperature sensor in 0.6 um CMOS", IEEE Journal of Solid-State Circuits, vol. 33, no. 7, pp.1117-1122, July 1998 (doi: 10.1109/4.701277).
[4] S. Chakraborty, A. Pandey, S.K. Saw, V. Nath, "A 1.37nW CMOS temperature sensor with sensing range of −25°C to 65°C", Proceeding of the IEEE/GCCT, pp. 246-249, Thuckalay, India, April 2015 (doi: 10.1109/GCCT.2015.7342660).
[5] G. Wang, G.C.M. Meijer, "The temperature characteristics of bipolar transistors fabricated in CMOS technology", Sensors and Actuators A: Physical, vol. 87, no. 1-2, pp. 81-89, Dec. 2000 (doi:10.1016/S0924-4247(00)00460-X).
[6] G.C.M. Meijer, G. Wang, F. Fruett, "Temperature sensors and voltage references, implemented in CMOS technology", IEEE sensors Journal, vol. 1, no. 3, pp. 225-234, Oct. 2001 (doi: 10.1109/JSEN.2001.954835).
[7] M.A. Pertijs, P. Niederkorn, A. Xu, M. McKillop, B. Bakker, J.H. Huijsing, "A CMOS smart temperature sensor with a 3 inaccuracy of 0.5 ºC from -50 to 120 ºC", IEEE Journal of Solid-State Circuits, vol. 40, no. 2, pp. 454–461, 2005.
[8] M. Sasaki, M. Ikeda, K. Asada, "A temperature sensor with an inaccuracy of -1/0.8 °C using 90-nm 1-V CMOS for online thermal monitoring of VLSI circuits", IEEE Trans. on Semiconductor Manufacturing, vol. 21, no. 2, pp. 201–208, May. 2008 (doi: 10.1109/TSM.2008.2000424).
[9] P. Chen, C.C. Chen, Y.H. Peng, K.M. Wang, Y.S. Wang, "A time-domain SAR smart temperature sensor with curvature compensation and a 3 inaccuracy of -0.4 °C to +0.6 °C over a 0 °C to 90 °C range", IEEE Journal on Solid-State Circuits, vol. 45, no. 3, pp. 600–609, 2010 (doi: 10.1109/JSSC.2010.2040658).
[10] D. Parsad, V. Nath, "An ultra-low power high-performance CMOS temperature sensor with an inaccuracy of − 0.3 °C/ + 0.1 °C for aerospace applications", Microsystem Technologies vol. 24, no. 3, pp. 1553-1558, Oct. 2018 (doi: 10.1007/s00542-017-3564-9).
[11] A. Bakker, J. Huijsing, "High-accuracy CMOS smart temperature sensors", 1st edn. Springer, Science Business Media, Boston, 2000.
[12] H. Mahmoodian, M. Dolatshahi, "An energy-efficient sample-and-hold circuit in CNTFET technology for high-speed applications", Analog Integrted Circuits Signal Processing, vol. 103, pp. 209–221. Mar. 2020 (doi: 10.1007/s10470-020-01607-y).
[13] S.M.A. Zanjani, M. Dousti, M. Dolatshahi, "A new low-power, universal, multi-mode Gm-C filter in CNTFET technology", Microelectronics Journal, vol. 90 no. 8, pp. 342-352, Aug. 2019 (doi: 10.1016/j.mejo.2019.01.003).
[14] S.M.A. Zanjani, M. Parvizi, "Design and simulation of a bulk driven operational transconductance amplifier based on CNTFET technology", Journal of Intelligent Procedures in Electrical Technology, vol. 12 no. 45, pp. 65-76, May 2021 (dor: 20.1001.1.23223871.1400.12.1.5.1).
[15] N. Dehabadi, R. Faghih Mirzaee, “Ternary DCVS half adder with built-in boosters", Journal of Intelligent Procedures in Electrical Technology, vol. 11, no. 42, pp. 41-56, 2020.
[16] A. Baghi Rahin, V. Baghi Rahin. "A new 2-input CNTFET-based XOR cell with ultra-low leakage power for low-voltage and low-power full adders", Journal of Intelligent Procedures in Electrical Technology, vol. 10, no. 37, pp.13-22, 2019.
[17] K. Karami, S.M.A. Zanjani, M. Dolatshahi. "Design and simulation of 4 transistors and 2 memristors memory with the least power and power-delay product", Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 47, pp. 49-59, Dec. 2021 (dor: 20.1001.1.23223871.1400.12.3.4.4).
[18] A. T. Mahani, P. Keshavarzian, "A novel energy-efficient and high-speed full adder using CNTFET", Microelectronics Journal, vol. 61, no. 1, pp. 79–88, 2017 (doi: 10.1016/j.mejo.2017.01.009).
[19] F. Sharifi, A. Panahi, M. H. Moaiyeri, H. Sharifi, K. Navi, "High performance CNFET-based ternary full adders", IETE Journal of Research, vol. 64 no.1, pp. 108–115. Jan. 2018 (doi: 0.1080/03772063.2017.1338973).
[20] P. Keshavarzian, R. Sarifkhani, "A novel CNTFET-based ternary full adder", Circuits, Systems, and Signal Processing, vol. 33, no. 3, pp.665–679, 2014 (doi: 10.1007/s00034-013-9672-6).
[21] C. Zhu, A. Chortos, Y. Wang, R. Pfattner, T. Lei, A.C. Hinckley, I. Pochorovski, X. Yan, JW. To, JY. Oh, JB. Tok, "Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors”, Nature Electronics, vol. 1, no. 3, pp.183-90, 2018 (doi: 10.1038/s41928-018-0041-0).
[22] G. Almudever, A. Rubio, "Variability and reliability analysis of CNFET technology: Impact of manufacturing imperfections", Microelectronics Reliability, vol. 55, no. 2, pp. 358-366, Feb. 2015 (doi: 10.1016/j.microrel.2014.11.011).
[23] D. Akinwande, J. Liang, S. Chong, Y. Nishi, H.S.P. Wong, "Analytical ballistic theory of carbon nanotube transistors: Experimental validation, device physics, parameter extraction, and performance projection", Journal of Applied Physics, vol. 104, no.12, pp. 1–7, Nov. 2008 (doi: 10.1063/1.3050345).
[24] Y.B. Kim, Y.B. Kim, F. Lombardi, "A novel design methodology to optimize the speed and power of the CNTFET circuits", Proceeding of the IEEE/MWSCAS, pp. 1130-1133, Cancun, Mexico, Aug. 2009 (doi: 10.1109/MWSCAS.2009.5235967).
[25] A. Pandey, V. Nath, "A CMOS temperature sensor and auto-zeroing circuit with inaccuracy of −1/+0.7 °C between −30 to 150 °C". Microsystem Technologies, vol. 23, pp. 4211–4218, 2017 (doi: 10.1007/s00542-016-2968-2).
[26] A. Sahafi, J. Sobhi, Z.D. Koozehkanani, "Nano watt CMOS temperature sensor", Analog Integretad Circuits and Signal Processing, vol. 75, pp. 343–348 2013 (doi: 10.1007/s10470-013-0046-6).
[27] M. Sasaki, M. Ikeda, K. Asada, "A temperature sensor with an inaccuracy of -1/0.8 ºC using 90-nm 1-V CMOS for online thermal monitoring of VLSI circuits", IEEE Trans. on Semiconductor Manufacturing, vol. 21, no. 2, pp. 201-208, May 2008 (doi: 10.1109/TSM.2008.2000424).
[28] K. Souri, Y. Chae, K.A.A. Makinwa, "A CMOS temperature sensor with a voltage-calibrated inaccuracy of ± 0.15ºC (3 sigma ) from -55 ºC to 125 ºC", IEEE Journal of Solid-State Circuits, vol. 48, no. 1, pp. 292-301, Jan. 2013 (doi: 10.1109/JSSC.2012.2214831).
[29] P. Zhang, H. Lu, "A 33.6 μm2 12.3 nW self-biased differential temperature sensor for thermal field monitoring”, Analog Integr Circ Sig Process, pp. 1-8, 2021 (doi: 10.1007/s10470-021-01837-8).
[30] Y. Bao, W. Li, "A high-speed temperature sensor with low supply sensitivity for SoC thermal monitoring", Journal of Circuits, Systems and Computers, vol. 27, no. 7, Article Number: 1850116, June 2018 (doi: 10.1142/S0218126618501165).
[31] M. Bashir, P. Rao, "A low power, miniature temperature sensor with one-point calibrated accuracy of ±0.25° C from− 55 to 125° C in 65 nm CMOS process", Analog Integrated Circuits and Signal Processing, vol. 99, no. 2, pp. 311-23, May 2019 (doi: 10.1007/s10470-018-1278-2).
_||_