بهینهسازی برش ورقهای اینکونل 718 با لیزر CO2 به روش الگوریتم ازدحام ذرات
محورهای موضوعی : انرژی های تجدیدپذیرسعید کیانی 1 , رسول ترکش اصفهانی 2 , زهرا زجاجی 3
1 - گروه مهندسی مکانیک- واحد نجفآباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
2 - مرکز تحقیقات فناوریهای نوین ساخت و تولید- واحد نجف آباد، دانشگاه آزاد اسلامی، نجفآباد، ایران
3 - دانشکده مهندسی کامپیوتر- گروه مهندسی نرم افزار، دانشگاه اصفهان، اصفهان، ایران
کلید واژه: بهینهسازی, صافی سطح, الگوریتم ازدحام ذرات, برش لیزر CO2, ورق اینکونل 718,
چکیده مقاله :
در این پژوهش متغیرهای اثر گذار بر روی کیفیت برش ورق اینکونل 718 در فرایند برشکاری با لیزر بررسی شده است. با کمک طراحی آزمایش به روش تاگوچی، متغیرهای ورودی شامل توان لیزر دی اکسید کربن و سرعت برش برای برش سه ضخامت مختلف از آلیاژ اینکونل 718 مورد بررسی قرار گرفت تا شرایط بهینه در نهایت به دست آید. پس از مشخص شدن داده های تست های تجربی، مجموعه داده به دست امده به کمک الگوریتم شبکه عصبی مدل سازی گردید. این مدل در مرحله بعد توسط الگوریتم بهینه سازی تجمعی ذرات (PSO) استفاده شد تا پارامترهای کاندید به دست امده را ارزیابی کند و کیفیت برش را بر این اساس پیش بینی نماید. در نهایت الگوریتم بهینه سازی تجمعی ذرات، مقدار بهینه شرایط برش را تعیین می کند. نتایج نشان داد که هنگامی که توان لیزر 1714 وات، سرعت برش 1382 میلیمتر بر دقیقه و ضخامت قطعه 8/0 میلیمتر باشد، بهترین کیفیت برای برش ورق سوپر آلیاژ اینکونل 718 با دستگاه برش لیزر دی اکسید کربن به دست می آید. نتایج به دست آمده برای مقادیر بهینه برای پارامترهای برش آلیاژ اینکونل با لیزر دی اکسید کربن با استفاده الگوریتم بهینه سازی تجمعی ذرات توسط یک آزمایش تجربی و تحقیقات مشابه راستی آزمایی شد. نتایج این آزمایش تجربی بسیار نزدیک به مقادیر بهینه الگوریتم بهینه سازی تجمعی ذرات است و این نشان دهنده کارایی مدل شبکه های عصبی در تخمین کیفیت برش و کارایی بهینه سازی انجام شده توسط PSO در یافتن شرایط بهینه است.
In this paper, the impact of different operative variables on the quality of cutting of Inconel material 718 is studied. Utilizing Taguchi test design, the input variables including carbon dioxide laser power and the cutting speed for cutting three different thicknesses of Inconel 718 alloy were investigated in order to achieve the optimal conditions. After obtaining experimental test results, dataset was modeled using artificial neural networks. The neural network model is then used for evaluating candidate solutions in particle swarm optimization (PSO) algorithm which is employed for optimization of cutting conditions. The results indicated that when the laser power of is 1714 (W), the cutting speed is 1382 (mm/min) and the thickness of the material is 0.8 (mm), The best quality for cutting Inconel 718 is achieved with a carbon dioxide laser cutting machine. The results of optimal cutting parameters of Inconel alloy with carbon dioxide laser which were obtained by PSO were verified through an experimental test and similar papers. The results of this experimental test were very close to the optimal values of the PSO, which demonstrates the efficiency of neural network model in predicting the quality of cutting and the efficiency of PSO in finding optimal conditions.
[1] P. Mahadeo, U. Shanker, "Metal forming and machining processes", Modeling of Metal Forming and Machining Processes, Part of the Engineering Materials and Processes book series, pp. 1-32, 2008 (doi: 10.1007/978-1-84800-189-3_1).
[2] J.M. Patel, D.M. Patel, "Parametric investigation in co2 laser cutting quality of hardox-400 materials", International Journal of Engineering Science and Technology, vol. 3 no. 7, pp. 5979-5984, July 2011.
[3] M.J. Grepl, R. Petru, L. Cep, L. Petrkovska, T. Zlamal, "The effect of process parameters on result quality of cut during laser cutting of material", Annals of DAAAM for 2012 & proceedings of the 23rd International DAAAM Symposium: Zadar, 2012 - 10 - 24/27 vol. 23041382, no. 1 of Annals of DAAAM & Proceedings, ISSN 2304-1382, pp. 1035-1038, 2012.
[4] A. Mavi, S. Ozden, G. Uzu, "Optimization and predictive modelling on cutting force of duplex stainless steel using artificial neural network", International Journal of Mechanical And Production Engineering, vol. 5, no. 7, pp. 81-85, 2017.
[5] B.S. Yilbas, "The laser cutting process; Analysis and applications”, 1st Edition, Elsevier, 2017 (ISBN: 9780128129821).
[6] S. Genna, E. Menna, G. Rubino, V. Tagliaferri, "Experimental investigation of industrial laser cutting: The effect of the material selection andthe process parameters on the kerf quality", Applied Sciences, vol. 10, no. 14, Article Number: 4956, 2020 (doi:10.3390/app10144956).
[7] M. Madić, P. Janković, M. Radovanović, D. Petković, "Analysis and optimization of surface roughness in co2 laser cutting of P265GH steel",vol. 1, no. 1, pp. 436-439, 2019 (doi: 10.24874/PES01.01.057).
[8] Y.D. Pawar, K.H. Inamdar, "Optimization of quality characteristics of laser cutting", Journal of Emerging Technologies and Innovative Research, vol. 2, no. 6, pp. 1959-1963, 2015.
[9] P.V. Argade, R.R. Arakerimath, "Parametric investigations on CO2 laser cutting of AISI 409 to optimize process parameters by taguchi method", International Journal of Engineering Trends and Technology,vol. 37, no. 6, pp. 3311-316, 2016.
[10] M. Moradi, O. Mehrabi, T. Azdast, K.Y. Benyounis, "The effect of low power co2 laser cutting process parameters on polycarbonate cut quality produced by injection molding",Modares Mechanical Engineering, vol. 17, no. 2, pp. 93-100, 2017 (In Persian).
[11] M. Madić, M.M. Radovanović, "An artificial intelligence approach for the prediction of surface raughnesroughness in CO2 laser cutting", Journal of Engineering Science and Technology, vol. 7, no. 6, pp. 679 – 689, 2012.
[12] F. Jafarian, A. Barghak, "Experimental investigations in order to evaluate the kerf and surface roughness in the laser cutting process of Inconel 718 superalloy and process optimization", Modares Mechanical Engineering, vol. 15, no. 13, pp. 68-72, 2016 (In Persian).
[13] A. Hascalık, M. Ay, "CO2 laser cut quality of Inconel 718 nickel– based superalloy", Optics and Laser Technology, vol. 48, pp.554–564, 2013 (doi: 10.1016/j.optlastec.2012.11.003).
[14] A.A. Khar’kov, A.V. Shakhmatov, E.L. Gyulikhandanov, E. Alekseeva, "Comparative analysis of corrosion-resistant alloys inconel 718 and ÉP718", Chemical and Petroleum Engineering, vol. 54, no. 10, pp. 44-48, 2018 (doi: 10.1007/s10556-019-00546-4).
[15] B.T.H.T. Baharudin, M.R. Ibrahim, N. Ismail, Z. Leman, M.K.A. Ariffin, D.L. Majid, "Experimental investigation of HSS face milling to AL6061 using taguchi method", Procedia Engineering, vol. 50, pp.933 – 941, 2012 (doi: 10.1016/j.proeng.2012.10.101).
[16] Z. Wang, D. Zhou, Q. Deng, G. Chen , W. Xie, "The microstructure and mechanical properties of inconel 718 fine grain ring forging", Proceeding of the Superalloy 718 and Derivatives, Pittsburgh, Pennsylvania, USA, Oct. 2010.(doi: 10.1002/9781118495223.CH26).
[17] M. Lotfi-Forushani, B. Karimi, G. Shahgholian, “Optimal PID controller tuning for multivariable aircraft longitudinal autopilot based on particle swarm optimization algorithm”, Journal of Intelligent Procedures in Electrical Technology, vol. 3, no. 9, pp. 41-50, June 2012 (in Persian).
[18] S. Nabavi, N. Osati-Eraghi, J. Akbari-Torkestani, “Wireless sensor networks routing using clustering based on multi-objective particle swarm optimization algorithm”, Journal of Intelligent Procedures in Electrical Technology, vol. 12, no. 47, pp. 29-47, Dec. 2021 (dor: 20.1001.1.23223871.1400.12.3.3.3).
[19] M. Nazarpour, N. Nezafati, S. Shokuhyar, “Detection of attacks and anomalies in the internet of things system using neural networks based on training with PSO and TLBO algorithms”, Signal Processing and Renewable Energy, vol. 4, no. 4, pp. 81-94, Autumn 2020.
[20] G. Shahgholian, M. Mahdavian, M. Noorani-Kalteh, M. Janghorbani, “Design of a new IPFC-based damping neurocontrol for enhancing stability of a power system using particle swarm optimization”, International Journal of Smart Electrical Engineering, vol. 3, no. 2, pp. 73-78, Spring 2014.
[21] I. Koohi, G.Z. Voicu, "Optimizing particle swarm optimization algorithm", Proceeding of the IEEE/CCECE, pp. 1-5, Toronto, ON, Canada, May 2014 (doi: 10.1109/CCECE.2014.6901057).
[22] E. García-Gonzalo, J.L. Fernández-Martínez, "A brief historical review of particle swarm optimization (PSO)”, Journal of Bioinformatics and intelligent Control, vol. 1, no. 1, pp. 3-16, June 2012 (doi: 10.1166/jbic.2012.1002).
[23] R.K. Shrivastava, A.K. Pandey, "Geometrical quality evaluation in laser cutting of Inconel-718 sheet by using Taguchi based regression analysis and particle swarm optimization", Infrared Physics and Technology, vol. 89, pp. 369-380, Mar. 2018 (doi: 10.1016/j.infrared.2018.01.028).
[24] P.K. Shrivastava, B. Singh, Y. Shrivastavaa, "Prediction of optimal cut quality characteristic of Inconel 718 sheet by genetic algorithm and particle swarm optimization" , Journal of Laser Applications, vol. 31, no. 2, Article Number: 022016, 2019 (doi: 10.2351/1.5090154).
[25] R. Tarkesh-Esfahani, S. Golabi, Z. Zojaji, "Optimization of finite element model of laser forming in circular path using genetic algorithms and ANFIS”, Soft Computing, vol. 20, no. 5, pp. 2031-2045, 2016 (doi: 10.1007/S00500-015-1622-8).
[26] R. Tarkesh-Esfahani, S. Golabi, Z. Zojaji. "Optimization of laser forming parameters using genetic algorithms", Journal of Advanced Materials and Processing, vol. 7, no. 1, pp. 52-60, Winter 2019.
_||_