جایابی واحدهای اندازهگیری فازوری در شبکههای قدرت و توزیع بهینه افزونگی اندازهگیریها
محورهای موضوعی : انرژی های تجدیدپذیرعلی انصاری 1 , فریبرز حقیقت دار فشارکی 2
1 - دانشکده مهندسی برق، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
2 - دانشکده مهندسی برق، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
کلید واژه: افزونگی, جایابی بهینه واحدهای اندازهگیری فازوری, رویتپذیری, توزیع بهینه افزونگی, قابلیتاطمینان,
چکیده مقاله :
در این مقاله، علاوه بر جایابی بهینه واحدهای اندازهگیری فازوری، روش جدیدی جهت توزیع بهینه افزونگی در راستای ارتقاء قابلیت اطمینان سیستم، ارائه شده است. از آنجا که باسها با افزونگی مرتبه 1 با از دست رفتن اندازهگیری خود، رویتپذیری سیستم را با خطر مواجه میکنند،با کمک این روش سعی شده که تعداد این قبیل از باسها در سیستم کاهش یابد. از سوی دیگر، روش پیشنهادی، بر خلاف روشهای قبلی، سعی میکند که با کاهش تعداد سایر باسهای با افزونگی مراتب پایین، بدون افزایش مراتب پائینتر از خود، قابلیت اطمینان سیستم را بهبود بخشد. همچنین جایابی واحدهای اندازهگیری فازوری در پیشامدهای خروج خط یا از دست رفتن واحد اندازهگیری، توسط این روش جدید، صورت میگیرد. لازم به ذکر است که روشهای پیشنهادی روی سیستمهای تست مرجع 14-، 30-، 57- و 118- شینه IEEE پیادهسازی شده و نتایج حاصل از شبیهسازی با روشهای دیگر مقایسه گردیده است. همچنین موارد فوق با در نظر گرفتن و بدون در نظر گرفتن اثر گرههای تزریق صفر مورد مطالعه قرار گرفته است.
Abstract: In this thesis in addition to optimal placement of phasor measurement units (PMUs) a new method is proposed for optimal distribution of measurements redundancy. Since the buses having first order redundancy degrade the system observability by missing their measurements, this method is used to reduce the number of these. On the other hand, the proposed method, in spite of the previous methods, is used to enhance the system observability by improving the redundancy order of the other low order redundancy buses without increasing the number of the lower orders. .In addition, by using this method, the optimal PMU placement can be obtained considering the contingencies such as PMU outage or line outage. It should be noted that the proposed methods are implemented on the IEEE 14-, 30, 57- and 118- bus power networks. The simulation results are compared with previous methods. In addition, simulations are performed with and without considering the effect of zero injection buses.
[1] B. Xu, A. Abur, "Observability analysis and measurement placement for systems with PMUs", Proceeding of the IEEE/PES, pp. 943-946, New York, NY, USA, Oct. 2004.
[2] A. G. Phadke, J. S. Thorp, Synchronized phasor measurements and their applications. Springer, 2008.
[3] B. Mohammadi-Ivatloo, S. Hosseini, "Optimal PMU placement for power system observability considering secondary voltage control", Proceeding of the IEEE/CCECE, pp. 000365-000368, Niagara Falls, ON, Canada, May 2008.
[4] A.A. Saleh, A.S. Adail, A.A. Wadoud, "Optimal phasor measurement units placement for full observability of power system using improved particle swarm optimisation", IET Generation, Transmission and Distribution, Vol. 11, No. 7, pp. 1794-1800, June 2017.
[5] I. Kamwa, J. Beland, G. Trudel, R. Grondin, C. Lafond, D. McNabb, "Wide-area monitoring and control at hydro-Québec: Past, present and future", Proceeding of the IEEE/PES, pp. 12-24, Montreal, Que., Canada, June 2006.
[6] I. Kamwa, R. Grondin, Y. Hébert, "Wide-area measurement based stabilizing control of large power systems-a decentralized/hierarchical approach", IEEE Trans. on Power Systems, Vol. 16, No. 1, pp. 136-153, Feb. 2001.
[7] Y.H. Lin, C.W. Liu, C.S. Chen, "A new PMU-based fault detection/location technique for transmission lines with consideration of arcing fault discrimination-part I: theory and algorithms", IEEE Trans. on power delivery, Vol. 19, No. 4, pp. 1587-1593, Oct. 2004.
[8] C.W. Liu, J.S. Thorp, "New methods for computing power system dynamic response for real-time transient stability prediction", IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, Vol. 47, No. 3, pp. 324-337, Mar. 2000.
[9] S. Skok, I. Ivankovic, Z. Cerina, "Applications based on PMU technology for improved power system utilization", Proceeding of IEEE/PES, pp. 1-8, Tampa, FL, USA, June 2007.
[10] Y.J. Wang, C.W. Liu, Y.H. Liu, "A PMU based special protection scheme: a case study of Taiwan power system," International Journal of Electrical Power and Energy Systems, Vol. 27, No. 3, pp. 215-223, Mar. 2005.
[11] J.D. La Ree, V. Centeno, J.S. Thorp, A.G. Phadke, "Synchronized phasor measurement applications in power systems", IEEE Trans. on smart grid, Vol. 1, No. 1, pp. 20-27, June 2010.
[12] F.J. Marin, F. Garcia-Lagos, G. Joya, F. Sandoval, "Genetic algorithms for optimal placement of phasor measurement units in electrical networks", Electronics Letters, Vol. 39, No. 19, pp. 1403-1405, Sep. 2003.
[13] F. Haghighatdar Fesharaki, R.A. Hooshmand, A. Khodabakhshian, "Simultaneous optimal design of measurement and communication infrastructures in hierarchical structuRed WAMS", IEEE Trans. on Smart Grid, Vol. 5, No. 1, pp. 312-319, Jan. 2014.
[14] B. Milosevic , M. Begovic, "Nondominated sorting genetic algorithm for optimal phasor measurement placement", IEEE Trans. on Power Systems, Vol. 18, No. 1, pp. 69-75, Feb. 2003.
[15] B. Mohammadi-Ivatloo, "Optimal placement of PMUs for power system observability using topology based formulated algorithms", Journal of Applied Sciences, Vol. 9, No. 13, pp. 2463-2468, Dec. 2009.
[16] P.P. Bedekar, S.R. Bhide, V.S. Kale, "Optimum PMU placement considering one line/one PMU outage and maximum Redundancy using Genetic algorithm", Proceeding of IEEE/Electrical Engineering/ECTICON, pp. 688-691, May 2011.
[17] Z.H. Rather, Z. Chen, P. Thøgersen, P. Lund, B. Kirby, "Realistic approach for phasor measurement unit placement: consideration of practical hidden costs", IEEE Trans. on Power Delivery, Vol. 30, No. 1, pp. 3-15, Feb. 2015.
[18] D. Ghosh, T. Ghose, D.K. Mohanta, "Communication feasibility analysis for smart grid with phasor measurement units", IEEE Trans. on Industrial Informatics, Vol. 9, No. 3, pp. 1486-1496, Aug. 2013.
[19] F. Aminifar, M. Fotuhi-Firuzabad, A. Safdarian, M. Shahidehpour, "Observability of hybrid AC/DC power systems with variable-cost PMUs", IEEE Trans. on Power Delivery, Vol. 29, No. 1, pp. 345-352, Feb. 2014.
[20] S. Teimourzadeh, F. Aminifar, M. Shahidehpour, "Contingency-constrained optimal placement of micro-PMUs and smart meters in microgrids", IEEE Trans. on Smart Grid, Vol. 10, No. 2, pp. 1888-1897, March 2019.
[21] Y. Wang, C. Wang, W. Li, J. Li, F. Lin, "Reliability-based incremental PMU placement", IEEE Trans. on Power Systems, Vol. 29, No. 6, pp. 2744-2752, Nov. 2014.
[22] F. Aminifar, M. Fotuhi-Firuzabad, M. Shahidehpour, A. Safdarian, "Impact of WAMS malfunction on power system reliability assessment", IEEE Trans. on Smart Grid, Vol. 3, No. 3, pp. 1302-1309, Sep. 2012.
[23] S. Soman, S. Dambhare, D. Dua, R. Gajbhiye, "Optimal zero injection considerations in PMU placement: An ILP approach", Proceeding of PSCC, Jan. 2008.
[24] N.H. Abbasy, H.M. Ismail, "A unified approach for the optimal PMU location for power system state estimation", IEEE Transactions on power systems, Vol. 24, No. 2, pp. 806-813, May 2009.
[25] S. Chakrabarti, E. Kyriakides, "Optimal placement of phasor measurement units for power system observability", IEEE Trans. on power systems, Vol. 23, No. 3, pp. 1433-1440, Aug. 2008.
[26] N. Xia, H.B. Gooi, S. Chen, M. Wang, "Redundancy based PMU placement in state estimation", Sustainable Energy, Grids and Networks, Vol. 2, pp. 23-31, June 2015.
[27] D. Dua, S. Dambhare, R.K. Gajbhiye, S. Soman, "Optimal multistage scheduling of PMU placement: An ILP approach", IEEE Transactions on Power delivery, Vol. 23, No. 4, pp. 1812-1820, Oct. 2008.
[28] Available on line: http://www.ee.washington.edu/research/pstca/
_||_