استخراج نقشهی رگهای خونی مغز توسط ادغام سری تصاویر DSA مبتنی بر تبدیل ویولت
محورهای موضوعی : تبدیل موجک و کاربردهای آن
1 - کارشناس ارشد/دانشگاه آزاد اسلامی واحد نجف آباد
2 - استادیار/دانشگاه آزاد اسلامی واحد نجف آباد
کلید واژه: تبدیل ویولت, نقشه رگهای خونی, آنژیوگرافی تفریق دیجیتال, ادغام ضرایب, معیارهای ارزیابی سطح فعالیت ضرایب,
چکیده مقاله :
اخیراً ادغام تصاویر در زمینهی تصاویر پزشکی نقش برجسته و قابل توجهی را به خود اختصاص داده است. از جمله تصاویر پزشکی، میتوان به تصاویر آنژیوگرافی تفریق دیجیتال (DSA) اشاره کرد که برای نمایش رگهای خونی استفاده میشوند. در این مقاله یک روش نوین برای ادغام سری تصاویر آنژیوگرافی تفریق دیجیتال بر اساس خصوصیات ضرایب تبدیل ویولت پیشنهاد شده است. ادغام ضرایب فرکانس بالا بر اساس یک نقشۀ ادغام پیشنهادی و چهار معیار ارزیابی متفاوت که معرف سطح انرژی ضرایب هستند، انجام شده است. سپس الگوریتم پیشنهادی بر اساس تبدیلات مختلف ویولت و برای معیارهای مختلف ارزیابی سطح فعالیت ضرایب فرکانس بالا، مقایسه شده است. مقایسهها بر اساس معیارهای ارزیابی علمی تعریف شده، که وجود نویز، میزان اطلاعات موجود در تصویر ادغام و مقدار همبستگی را ارائه خواهند کرد، انجام شده است. در آخر تبدیل ویولت Meyer به عنوان تبدیل برتر، مجموع لاپلاسین اصلاح شده و انرژی محلی به عنوان بهترین معیار ارزیابی سطح فعالیت ضرایب فرکانس بالا و پایین، برای استخراج بهترین نقشۀ رگهای خونی مغز نتیجهگیری شدهاند.
Recently image fusion has prominent and applicable roles in medical image processing. Digital subtraction angiography (DSA) image is applied to display map of blood vessels. In this essay, a new fusion algorithm for DSA serial images based on discrete wavelet transform coefficients is proposed. Fusion of high frequency coefficients is based on proposed fusion map and four evaluation criteria which introduce level of coefficient's energy. Our algorithm will be compared for different wavelet transforms and activity criteria for high frequency coefficients. The comparisons are based on the objective evaluation criteria which show measure of noise existence, sharpness and correlation between the fusion result and reference image. Finally, Meyer discrete wavelet transform is resulted as the best wavelet transform, and sum of modified Laplacian, local energy are introduced as activity level measurment for high and low frequency coefficients in process of brain vessel map extraction.
[1] A. Dallil, M. Oussalah, A. Ouldali, “Sensor Fusion and Target Tracking Using Evidential Data Association”, Sensors Journal, IEEE, Vol. 13, No. 1, pp. 285-293, 2013.
[2] R. Shen, I. Cheng, A. Basu, “Cross-Scale Coefficient Selection for Volumetric Medical Image Fusion”, Biomedical Engineering, IEEE Transactions on, Vol. 60, No. 4, pp.1069–1079, April 2013.
[3] M. Niemeijer, M.D. Abramoff, B. van Ginneken, “Information Fusion for Diabetic Retinopathy CAD in Digital Color Fundus Photographs”, Medical Imaging, IEEE Transactions on, Vol. 28, No. 5, pp.775–785, 2009.
[4] M. Choi, R.Y. Kim, M.-R. Nam, H.O. Kim, “Fusion of multispectral and panchromatic satellite images using the curvelet transform”, IEEE Geoscience and Remote Sensing Letters, Vol. 2, No. 2, pp. 136–140, 2005.
[5] A. Dallil, M. Oussalah, A. Ouldali, “Sensor Fusion and Target Tracking Using Evidential Data Association”, Sensors Journal, IEEE, Vol. 13, No. 1, pp. 285–293, 2013.
[6] C.S. Pattichis, M.S. Pattichis, E. Micheli-Tzanakou, “Medical imaging fusion application: an overview”, Asilomar Conference on Signals, Systems and Computers, Vol. 2, pp. 1263–1267, 2001.
[7] P. Huber, Cerebral Angiography, Thieme, Nww York, 1982.
[8] P.J. Burt, and E.H. Adelson, “The Laplacian Pyramid as a Compact Image Code”, Communications, IEEE Transactions on, Vol. 31, No. 4, pp. 532-540, 1983.
[9] G. Pajares, J. Manuel de la Cruz, “A wavelet-based image fusion tutorial”, Pattern Recognition, Vol. 37, pp. 1855-1872, 2004.
[10] E.J. Candes, L. Demanet, D.L. Donoho, L. Ying, “Fast discrete curvelet transforms”, SIAM Multiscale Model. Simul, Vol. 3, pp. 861–899, 2006.
[11] M.N. Do, M. Vetterli, “The contourlet transform: an efficient directional multiresolution image representation”, Image Processing, IEEE Transactions on, Vol. 14, No. 12, pp. 2091-2106, 2005.
[12] X. Li, M. He, M. Rou, “Multifocus image fusion based on redundant wavelet transform”, Image Processing, IET, Vol. 4, No. 4, pp. 283-293, 2010.
[13] M.H. Asmare, V.S Asirvadam, L. Iznita, “Multi-Sensor Image Enhancement and Fusion for Vision Clarity Using Contourlet Transform”, Information Management and Engineering, 2009. ICIME '09. International Conference on, pp. 352 -356, April 2009.
[14] G. Zhang, Y. Zheng, J. Wu, Z. Cui, “Wavelet Fusion in DSA Based on Dynamic Fuzzy Data Model”, Bioinformatics and and Biomedical Engineering, 2009. ICBBE 2009.3rd International Conference on, pp.1-4, June 2009.
[15] G. Zhang, Z. Cui, F. Li, J. Wu, “DSA Image Fusion Based On Dynamic Fuzzy Logic and Cutvelet Entropy”, Journal of MultiMedia, Vol. 4, No. 3, pp.129-136, 2009.
[16]V.S. Petrovic, C.S. Xydeas, “Gradient-based multiresolution image fusion”, IEEE Transactions on Image Processing, Vol. 13, No. 2, pp. 228-237, 2004.
[17] T. Hua, Y.-N. Fu, P.-G. Wang, “Image fusion algorithm based on regional variance and multi-wavelet bases”, Future Computer and Communication (ICFCC), 2010 2nd International Conference on, Vol. 2, pp.V2-792,V2-795, 2010.
[18] V. Maik, D. Cho, J. Shin, J. Paik, “Regularized Restoration Using Image Fusion for Digital Auto-Focusing”, Circuits and Systems for Video Technology, IEEE Transactions on, Vol. 17, No. 10, pp. 1360–1369, 2007.
[19] H. Lu, L. Zhang, S. Serikawa, “Maximum local energy: An effective approach for multisensor image fusion in beyond wavelet transform domain”, Journal of Computers & Mathematics, Vol. 64, No.5, pp. 996-1003, 2012.
[20] T. Stathaki, “Image Fusion: Algorithms and Applications”, pp. 669-679, Academic Press, 2008.
[21] X.-H. Yang, F.-Z.Huang, G. Liu, “Urban Remote Image fusion using Fuzzy Rules”, International Conference on Machine Learning and Cybernetics, pp. 105-106, 2009.
[22] J.L. Van Genderen, C. Pohl, “Image fusion: Issues, techniques and applications”, Intelligent Image Fusion, Proceedings EARSeL Workshop, Strasbourg, France, pp.18-26, 1994.
[23] Z. Zhang, R.S. Blum,“A categorization of multiscale decomposition-based image fusion schemes with a performance studyfor a digital camera application”, Proc.IEEE, Vol. 87, No. 8. pp. 1315-1326,1999.
_||_