بهینهسازی تولید زیستتوده باکتری پروبیوتیک لاکتوباسیلوس رامنوسوس در سطح نیمهصنعتی
الموضوعات :مریم آرمند 1 , محمد فائزی قاسمی 2 , محمدرضا فاضلی 3 , میرساسان میرپور 4
1 - گروه میکروبیولوژی، دانشکده علوم پایه ،دانشگاه آزاد اسلامی واحدلاهیجان،لاهیجان،ایران
2 - گروه میکروبیولوژی، دانشکده علوم ،پایه دانشگاه آزاد اسلامی واحدلاهیجان،لاهیجان،ایران
3 - گروه کنترل دارو و غذا، دانشکده داروسازی، دانشگاه علوم پزشکی تهران، تهران، ایران
4 - گروه میکروبیولوژی، دانشکده علوم ،پایه دانشگاه آزاد اسلامی واحدلاهیجان،لاهیجان،ایران
الکلمات المفتاحية: بهینهسازی, پروبیوتیک, لاکتوباسیلوس رامنوسوس, طراحی پلاکت- برمن, طراحی آزمون,
ملخص المقالة :
سابقه و هدف: باکتریهای پروبیوتیک نقش بسیار مهمی در بهبود فلور طبیعی روده داشته و مانع رشد باکتریهای مضر در دستگاه گوارش شده و ازنظر اهداف دارویی و درمانی دارای اهمیت میباشند. هدف از این مطالعه بهینهسازی تولید زیستتوده باکتری لاکتوباسیلوس رامنوسوس GG ATCC53103 ) Lactobacillus rhamnosus (با استفاده از روش طراحی آزمون است.مواد و روشها: در این تحقیق از باکتری پروبیوتیک لاکتوباسیلوس رامنوسوس استفاده شد. بهمنظور بهینهسازی از روش طراحی پلاکت- برمن استفاده گردید. تمام کشت های محیط پایه و بهینهشده در فرمانتور 1300 لیتری شرکت پارس پاد انجام شد.یافتهها: نتایج نشان داد که منابعملاس چغندرقند، گلوکز و کازئین بیشترین اثر را در تولید زیستتوده لاکتوباسیلوس رامنوسوس دارند. گلوکز با کازئین و ملاس چغندرقند اثر همافزایی داشته و موجب افزایش تولید زیستتوده میشوند. پس از بهینهسازی، محیط کشت دارای مقادیر ترکیبات زیر به ازای گرم در لیتر: گلوکز 50/112، ملاس چغندرقند 25/56، کازئین 75/18، عصاره مخمر 75/18، K2HPO4 13/13، تویین 80 88/1، 7H2O.MgSO43750/0، MnSO4. 4H2O 0750/0، CaCl2. 2H2O 1875/0 و سایمتیکن 25/1 بهمنظور تولید بهترین زیستتوده توسط لاکتوباسیلوس رامنوسوس مشخص گردید. میزان زیستتوده بیشتر از دو برابر نسبت به شرایط محیط کشت پایه افزایش پیدا کرد.نتیجهگیری: با توجه به تولید زیستتوده باکتری لاکتوباسیلوس رامنوسوس در سطح نیمهصنعتی درفرمانتور 1300 لیتری ، امکان تولید صنعتی زیستتوده لاکتوباسیلوس رامنوسوس وجود خواهد داشت.همچنین کشت این باکتری بهصورت صنعتی در شرایط کشت ناپیوسته تغذیه شونده و متداوم بهعنوان یک پروبیوتیک تجاری پیشنهاد میشود.
varieties of Iranian native olives and investigation of their antimicrobial activity against two
pathogenic members of Entrobacteriaceae. Biological Journal of Microorganism. 2015;4(13).
2. Lebeer S, anderleyden J, De Keersmaecker SC. Genes and molecules of lactobacilli
supporting probiotic action. Microbiology and Molecular Biology eviews. 2008;72(4):
728-64.
3. Lebeer S, anderleyden J, De Keersmaecker SC. Host interactions of probiotic bacterial
surface molecules: comparison with commensals and pathogens. Nature eviews
Microbiology. 2010;8(3):171-84.
4. Corr SC, Hill C, Gahan CG. Understanding the mechanisms by which probiotics inhibit
gastrointestinal pathogens. Advances in food and nutrition research. 2009;56:1-15.
5. Krishna ao , Samak G. Protection and restitution of gut barrier by probiotics: nutritional
and clinical implications. Current Nutrition Food Science. 2013;9(2):99-107.
6. Mack D, Ahrné S, Hyde L, Wei S, Hollingsworth MA. Extracellular MUC3 mucin secretion
follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut. 2003;52
(6):827-33.
7. Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition
shapes intestinal function. Nature eviews Immunology. 2010;10(2):131-44.
8. Wells JM, editor Immunomodulatory mechanisms of lactobacilli. Microbial cell factories;
2011: BioMed Central.
9. Doron S, Snydman D , Gorbach SL. Lactobacillus GG: bacteriology and clinical applications. Gastroenterology Clinics. 2005;34(3):483-98.
10. Segers ME, Lebeer S, editors. Towards a better understanding of Lactobacillus rhamnosus
GG-host interactions. Microbial cell factories; 2014: BioMed Central.
11. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, eunanen J, Partanen P, et al.
Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a
human-mucus binding protein. Proceedings of the National Academy of Sciences. 2009;106
(40):17193-8.
12. Tuomola EM, Ouwehand AC, Salminen SJ. The effect of probiotic bacteria on the adhesion
of pathogens to human intestinal mucus. FEMS Immunology Medical Microbiology.
1999;26(2):137-42.
13. McGuire S. US department of agriculture and US department of health and human services,
dietary guidelines for americans, 2010. Washington, DC: US government printing office, January 2011. Oxford University Press; 2011.
14. athore A, Bhambure , Ghare . Process analytical technology (PAT) for
biopharmaceutical products. Analytical and bioanalytical chemistry. 2010;398(1):137-54.
15. He S, Wang H, Wu B, hou H, hu P, Yang , et al. esponse surface methodology
optimization of fermentation conditions for rapid and efficient accumulation of macrolactin A
by marine Bacillus amyloliquefaciens ESB-2. Molecules. 2013;18(1):408-17.
16. Lei H, hao H, Yu , hao M. Effects of wort gravity and nitrogen level on fermentation
performance of brewer’s yeast and the formation of flavor volatiles. Applied biochemistry and
biotechnology. 2012;166(6):1562-74.
17. Salihu A, Bala M, Bala SM. Application of Plackett-Burman experimental design for lipase
production by Aspergillus niger using shea butter cake. International Scholarly esearch
Notices. 2013.
18. Alvarez M, Aguirre-Ezkauriatza E, amírez-Medrano A, odríguez-S nchez Á. Kinetic
analysis and mathematical modeling of growth and lactic acid production of Lactobacillus
casei var. rhamnosus in milk whey. Journal of dairy science. 2010;93(12):5552-60.
19. Khoshayand F, Goodarzi S, Shahverdi A , Khoshayand M . Optimization of culture
conditions for fermentation of soymilk using Lactobacillus casei by response surface
methodology. Probiotics and antimicrobial proteins. 2011;3(3-4):159-67.
20. Pedram N, Ataei S. Optimization of a Modified GS Medium for a Probiotic Strain
(L. acido hilus ATCC4356). 2014.
21. Hwang C-F, Chang J-H, Houng J-Y, Tsai C-C, Lin C-K, Tsen H-Y. Optimization of medium
composition for improving biomass production of Lactobacillus lantarum Pi06 using the
Taguchi array design and the Box-Behnken method. Biotechnology and Bioprocess
Engineering. 2012;17(4):827-34.
22. Chang C, Liew S. Growth Medium Optimization for Biomass Production of a Probiotic
Bacterium, L. actobacillus rhamnosus ATCC 746. Journal of Food Biochemistry. 2013;37
(5):536-
23. Bern rdez PF, Amado I , Castro LP, Guerra NP. Production of a potentially probiotic culture
of Lactobacillus casei subsp. casei CECT 4043 in whey. International Dairy Journal. 2008;18
(10-11):1057-65.
24. Aguirre-Ezkauriatza E, Aguilar-Y ñez J, amírez-Medrano A, Alvarez M. Production of
probiotic biomass (Lactobacillus casei) in goat milk whey: Comparison of batch, continuous
and fed-batch cultures. Bioresource Technology. 2010;101(8):2837-44.
25. Ming LC, Halim M, Abd ahim , Wan HY, Ariff AB. Strategies in fed-batch cultivation on
the production performance of Lactobacillus salivarius I 24 viable cells. Food science and
biotechnology. 2016;25(5):1393-8.
26. Krzywonos M, Eberhard T. High density process to cultivate Lactobacillus lantarum
biomass using wheat stillage and sugar beet molasses. Electronic Journal of Biotechnology.
2011;14(2):6-.
27. hang B, Shu G, Bao C, Cao J, Tan Y. Optimization of Culture Medium for Lactobacillus
bulgaricus using Box-Behnken Design. Acta Universitatis Cibiniensis Series E: Food
Technology. 2017;21(1):3-10.
28. Coelho L, De Lima C, odovalho C, Bernardo M, Contiero J. Lactic acid production by new
Lactobacillus lantarum LMISM6 grown in molasses: optimization of medium composition.
Brazilian Journal of Chemical Engineering. 2011;28(1):27-36.
29. Beitel SM, Coelho LF, Contiero J. Efficient Conversion of Agroindustrial Waste into D (-)
Lactic Acid by Lactobacillus delbrueckii Using Fed-Batch Fermentation. BioMed esearch
International.;2020.
_||_
varieties of Iranian native olives and investigation of their antimicrobial activity against two
pathogenic members of Entrobacteriaceae. Biological Journal of Microorganism. 2015;4(13).
2. Lebeer S, anderleyden J, De Keersmaecker SC. Genes and molecules of lactobacilli
supporting probiotic action. Microbiology and Molecular Biology eviews. 2008;72(4):
728-64.
3. Lebeer S, anderleyden J, De Keersmaecker SC. Host interactions of probiotic bacterial
surface molecules: comparison with commensals and pathogens. Nature eviews
Microbiology. 2010;8(3):171-84.
4. Corr SC, Hill C, Gahan CG. Understanding the mechanisms by which probiotics inhibit
gastrointestinal pathogens. Advances in food and nutrition research. 2009;56:1-15.
5. Krishna ao , Samak G. Protection and restitution of gut barrier by probiotics: nutritional
and clinical implications. Current Nutrition Food Science. 2013;9(2):99-107.
6. Mack D, Ahrné S, Hyde L, Wei S, Hollingsworth MA. Extracellular MUC3 mucin secretion
follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut. 2003;52
(6):827-33.
7. Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition
shapes intestinal function. Nature eviews Immunology. 2010;10(2):131-44.
8. Wells JM, editor Immunomodulatory mechanisms of lactobacilli. Microbial cell factories;
2011: BioMed Central.
9. Doron S, Snydman D , Gorbach SL. Lactobacillus GG: bacteriology and clinical applications. Gastroenterology Clinics. 2005;34(3):483-98.
10. Segers ME, Lebeer S, editors. Towards a better understanding of Lactobacillus rhamnosus
GG-host interactions. Microbial cell factories; 2014: BioMed Central.
11. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, eunanen J, Partanen P, et al.
Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a
human-mucus binding protein. Proceedings of the National Academy of Sciences. 2009;106
(40):17193-8.
12. Tuomola EM, Ouwehand AC, Salminen SJ. The effect of probiotic bacteria on the adhesion
of pathogens to human intestinal mucus. FEMS Immunology Medical Microbiology.
1999;26(2):137-42.
13. McGuire S. US department of agriculture and US department of health and human services,
dietary guidelines for americans, 2010. Washington, DC: US government printing office, January 2011. Oxford University Press; 2011.
14. athore A, Bhambure , Ghare . Process analytical technology (PAT) for
biopharmaceutical products. Analytical and bioanalytical chemistry. 2010;398(1):137-54.
15. He S, Wang H, Wu B, hou H, hu P, Yang , et al. esponse surface methodology
optimization of fermentation conditions for rapid and efficient accumulation of macrolactin A
by marine Bacillus amyloliquefaciens ESB-2. Molecules. 2013;18(1):408-17.
16. Lei H, hao H, Yu , hao M. Effects of wort gravity and nitrogen level on fermentation
performance of brewer’s yeast and the formation of flavor volatiles. Applied biochemistry and
biotechnology. 2012;166(6):1562-74.
17. Salihu A, Bala M, Bala SM. Application of Plackett-Burman experimental design for lipase
production by Aspergillus niger using shea butter cake. International Scholarly esearch
Notices. 2013.
18. Alvarez M, Aguirre-Ezkauriatza E, amírez-Medrano A, odríguez-S nchez Á. Kinetic
analysis and mathematical modeling of growth and lactic acid production of Lactobacillus
casei var. rhamnosus in milk whey. Journal of dairy science. 2010;93(12):5552-60.
19. Khoshayand F, Goodarzi S, Shahverdi A , Khoshayand M . Optimization of culture
conditions for fermentation of soymilk using Lactobacillus casei by response surface
methodology. Probiotics and antimicrobial proteins. 2011;3(3-4):159-67.
20. Pedram N, Ataei S. Optimization of a Modified GS Medium for a Probiotic Strain
(L. acido hilus ATCC4356). 2014.
21. Hwang C-F, Chang J-H, Houng J-Y, Tsai C-C, Lin C-K, Tsen H-Y. Optimization of medium
composition for improving biomass production of Lactobacillus lantarum Pi06 using the
Taguchi array design and the Box-Behnken method. Biotechnology and Bioprocess
Engineering. 2012;17(4):827-34.
22. Chang C, Liew S. Growth Medium Optimization for Biomass Production of a Probiotic
Bacterium, L. actobacillus rhamnosus ATCC 746. Journal of Food Biochemistry. 2013;37
(5):536-
23. Bern rdez PF, Amado I , Castro LP, Guerra NP. Production of a potentially probiotic culture
of Lactobacillus casei subsp. casei CECT 4043 in whey. International Dairy Journal. 2008;18
(10-11):1057-65.
24. Aguirre-Ezkauriatza E, Aguilar-Y ñez J, amírez-Medrano A, Alvarez M. Production of
probiotic biomass (Lactobacillus casei) in goat milk whey: Comparison of batch, continuous
and fed-batch cultures. Bioresource Technology. 2010;101(8):2837-44.
25. Ming LC, Halim M, Abd ahim , Wan HY, Ariff AB. Strategies in fed-batch cultivation on
the production performance of Lactobacillus salivarius I 24 viable cells. Food science and
biotechnology. 2016;25(5):1393-8.
26. Krzywonos M, Eberhard T. High density process to cultivate Lactobacillus lantarum
biomass using wheat stillage and sugar beet molasses. Electronic Journal of Biotechnology.
2011;14(2):6-.
27. hang B, Shu G, Bao C, Cao J, Tan Y. Optimization of Culture Medium for Lactobacillus
bulgaricus using Box-Behnken Design. Acta Universitatis Cibiniensis Series E: Food
Technology. 2017;21(1):3-10.
28. Coelho L, De Lima C, odovalho C, Bernardo M, Contiero J. Lactic acid production by new
Lactobacillus lantarum LMISM6 grown in molasses: optimization of medium composition.
Brazilian Journal of Chemical Engineering. 2011;28(1):27-36.
29. Beitel SM, Coelho LF, Contiero J. Efficient Conversion of Agroindustrial Waste into D (-)
Lactic Acid by Lactobacillus delbrueckii Using Fed-Batch Fermentation. BioMed esearch
International.;2020.