ارزیابی اثر تغییرات کاربری اراضی بر سطح تراز آب زیرزمینی (مطالعه موردی: دشت آبخوان اسلام آباد)
الموضوعات :
1 - گروه عمران،واحد بوشهر،دانشگاه آزاد اسلامی،واحد بوشهر،ایران
الکلمات المفتاحية: کاربری اراضی, سطح تراز آب زیرزمینی, اسلامآباد,
ملخص المقالة :
آبهای زیرزمینی یکی از منابع اصلی تأمین آب شیرین کره زمین محسوب میشوند. امروزه باتوجهبه رشد جمعیت و روشهای نوین آبیاری، پدیده تغییر کاربری اراضی به سرعت در حال افزایش است که اثرات منفی بر این منابع ارزشمند دارد. وابستگی بالا به منابع آب زیرزمینی در ایران و تعادل بخشی به این منبع مهم، موجب شد تا پژوهش حاضر به رابطه تغییرات کاربری اراضی بر سطح تراز آب زیرزمینی دشت آبخوان اسلامآباد در بازه زمانی 28 ساله در دو دوره (دوره اول: 1374-1378و دوره دوم: 1398-1402) بپردازد. در ابتدا با استفاده از تصاویر ماهواره لندست-5 و لندست-8 پوشش اراضی منطقه مطالعاتی را با الگوریتم جنگل تصادفی در 5 کلاس (کشاورزی دیم، کشاورزی آبی، مناطق ساخته شده، پیکره آبی و اراضی بایر) طبقهبندی گردید. سپس با بهرهگیری از آمار چاههای مشاهدهای نقشههای پهنهبندی سطح تراز آب زیرزمینی در نرمافزارArcMap با ابزار درونیابی IDW تهیه شدند. در نهایت نتایج تغییرات کاربری اراضی با سطح تراز آب زیرزمینی مقایسه شد. نتایج نشان داد کاربری کشاورزی دیم در دوره دوم 33/15 درصد کاهش یافته که از این میزان، 79/12 درصد به کاربری کشاورزی آبی تبدیل شده و بیشتر در بخشهای مرکزی حوضه اتفاق افتاده است. کاربری ساختهشده رشد 47/2 درصدی داشته که بیشتر آن مربوط به شهر اسلامآباد است. پهنه آبی به میزان 3/0 درصد کاهش و اراضی بایر 10/0 درصد افزایش مساحت داشته است. سطح تراز آب زیرزمینی در بازه مطالعاتی روند نزولی داشته بهگونهایکه در نواحی مرکزی سطح تراز آب زیرزمینی از 14 متر در دوره اول با 18 و 27 متر در این دوره جایگزین شدهاست در این نواحی کاربری کشاورزی دیم به کاربری کشاورزی آبی تغییر یافته است. در مناطق شمالی حوضه نیز کاهش سطح تراز آب زیرزمینی به دلیل گسترش کاربری ساخته شده (شهر اسلام آباد) اتفاق افتاده است.
اسکندری دامنه, حامد, زهتابیان, غلامرضا, سلاجقه, علی, قربانی, مهدی, & خسروی, حسن. (1397). تأثیر تغییرات کاربری اراضی بر کمیت و کیفیت منابع آب زیرزمینی حوضۀ غرب تالاب جازموریان. نشریه علمی - پژوهشی مرتع و آبخیزداری.
جلیلی, خلیل, مرادی, حمیدرضا, & بزرگ حداد, امید. (1401). بررسی اثرات تغییر اقلیم بر منابع آب زیرزمینی دشت اسلامآباد و بهینهسازی تخصیص سطح اراضی آن. مهندسی اکوسیستم بیابان, 5(11), 117-131.
Abedini, M., & Mohammadzadeh Shishagaran, M. (2022). Investigation of land use changes and its relationship with groundwater level (Case Study: Mallard County). Environmental Management Hazards, 9(1), 31-44. doi: 10.22059/jhsci.2022.339360.709.
Ahmadi, T., Ziaei, A., Davary, K., Faridhosseini, A., Izadi, A., Rasoulzadeh, A., 2013. Estimation of groundwater recharge using various methods in Neishaboor Plain. Iran. Groundw. Model. Manag. Uncertain. 978-1-138-00012-4.
Asadollahi, A., Sohrabifar, A., Ghimire, A. B., Poudel, B., & Shin, S. (2024). The Impact of Climate Change and Urbanization on Groundwater Levels: A System Dynamics Model Analysis. Environmental Protection Research, 1-15.
Asghari Saraskanrood, S., & Mohamadzadeh Shishegaran, M. (2021). Investigation of land use changes and its relationship with groundwater level Case study: Azarshahr city. Journal of Environmental Science Studies, 6(3), 3913-3926.
Ashaolu, E.D., Olorunfemi, J.F., Ifabiyi, I.P., 2019. Effect of land use/land cover change on groundwater recharge in osun drainage Basin, Nigeria. J. Geol., Geogr. Geoecol. 28 (3), 381–394. https://doi.org/10.15421/111936.
Ayieko, A., Moses, G., Godfrey, M., Kimwatu, D., & Mwangi, A. (2024). Spatial modeling of groundwater across land use land cover and climate change gradient using SWAT and Logan’s method: a case study of Mbagathi sub-catchment. Modeling Earth Systems and Environment, 10(1), 285-301.
Bronstert, A., 2004. Rainfall-runoff modelling for assessing impacts of climate and land-use change. Hydrol. Process. 18 (3), 567–570. https://doi.org/10.1002/hyp.5500.
Congalton, R.G., 1991. A review of assessing the accuracy of classification of remotely sensed data. Remote Sens. Environ. 37, 35–46. https://doi.org/10.1016/00344257(91)90048-B
Devia, G.K., Ganasri, B.P., Dwarakish, G.S., 2015. A review on hydrological models. Aquat. Procedia 4, 1001–1007. https://doi.org/10.1016/j.aqpro.2015.02.126.
Dias, L.C.P.; Macedo, M.N.; Costa, M.H.; Coe, M.T.; Neill, C. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazil. J. Hydrol. Reg. Stud. 2015, 4, 108–122. [Google Scholar] [CrossRef] [Green Version]
Dibaba, W.T., Adugna, T., Tamam, D., 2016. The effects of land use land cover change on hydrological process of Gilgel Gibe, Omo Gibe Basin, Ethiopia. Int. J. Sci.
Ellis, E. (2013). Land-use and land-cover change. Eds.Robert Pontius Retrieved July 21, 2014.
Elmahdy, S.I.; Mohamed, M.M. Automatic detection of near surface geological and hydrological features and investigating their influence on groundwater accumulation and salinity in southwest Egypt using remote sensing and GIS. Geocarto Int. 2014, 30, 132–144. [Google Scholar] [CrossRef]
Elmahdy, S.I.; Mohamed, M.M. Factors controlling the changes and spatial variability of Junipers phoenicea in Jabal Al Akhdar, Libya, using remote sensing and GIS. Arab. J. Geosci. 2016, 9, 478. [Google Scholar] [CrossRef]
Elmahdy, S.I.; Mohamed, M.M. Groundwater of Abu Dhabi Emirate: A regional assessment by means of remote sensing and geographic information system. Arab. J. Geosci. 2015, 8, 11279–11292. [Google Scholar] [CrossRef]
Elmahdy, S.I.; Mohamed, M.M. Influence of geological structures on groundwater accumulation and groundwater salinity in Musandam Peninsula, UAE and Oman. Geocarto Int. 2013, 28, 453–472. [Google Scholar] [CrossRef]
Elmahdy, S.I.; Mohamed, M.M. Land use/land cover change impact on groundwater quantity and quality: A case study of Ajman Emirate, the United Arab Emirates, using remote sensing and GIS. Arab. J. Geosci. 2016, 9, 722. [Google Scholar] [CrossRef]
Eng. Res. 7, 117–128.
FAO. (2016). Global diagnostic on groundwater governance (p. 210). FAO, Rome, Italy (Retrieved from). https://www.fao.org/documents/card/en/c/be747191–6523- 3b-8e97–54db762032a7/.
Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud Detection Algorithm Comparison and Validation for Operational Landsat Data Products. Remote Sens. Environ. 2017, 194, 379–390.
Gleeson, T., Befus, K.M., Jasechko, S., Luijendijk, E., Cardenas, M.B., 2016. The global volume and distribution of modern groundwater. Nat. Geosci. 9, 161–164.https://doi.org/10.1038/ngeo2590
Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Stacke, T. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3251–3256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Hagolle, O.; Colin, J. Several Issues Found in Recent Papers on Cloud Detection Published in MDPI Remote Sensing. Available online: https://labo.obs-mip.fr/multitemp/issues-with-mdpi-remote-sensing-recent-papers-on-cloud-detection/ (accessed on 14 April 2022).
Hussain, S., Wang, Y., Awais, M., Sajjad, M. M., Ejaz, N., Javed, U., ... & Iqbal, J. (2024). Integrated assessment of groundwater quality dynamics and Land use/land cover changes in rapidly urbanizing semi-arid region. Environmental Research, 260, 119622.
IAH 2016-International Association of Hydrogeologists.
Immerzeel, W. Historical trends and future predictions of climate variability in the Brahmaputra basin. Int. J. Clim. 2008, 28, 243–254. [Google Scholar] [CrossRef]
Jothimani, M., Gunalan, J., Duraisamy, R., & Abebe, A. (2021, September). Study the Relationship Between LULC, LST, NDVI, NDWI and NDBI in Greater Arba Minch Area, Rift Valley, Ethiopia. In 3rd International Conference on Integrated Intelligent Computing Communication & Security (ICIIC 2021) (pp. 183-193). Atlantis Press.
Lindquist, L.W.; Palmquist, K.A.; Jordan, S.E.; Lauenroth, W.K. Impacts of climate change on groundwater recharge in Wyoming big sagebrush ecosystems are contingent on elevation. West. N. Am. Nat. 2019, 79, 37–48. [Google Scholar] [CrossRef]
Mengistu, T.D., Chung, I.-M., Kim, M.-G., Chang, S.W., Lee, J.E., 2022. Impacts and implications of land use land cover dynamics on groundwater recharge and surface runoff in East African Watershed. Water 14 (13), 2068. https://doi.org/10.3390/w14132068.
Ministry of Environment and Water (MEW). UAE State of Environment Report; Ministry of Environment and Water (MEW): Abu Dhabi, United Arab Emirates, 2015.
Model. Earth Syst. Environ. 8 (1), 277–292. https://doi.org/10.1007/s40808-021-01085-9.
Mohamed, M.M.; Elmahdy, S. Land Use/Land Cover Changes Monitoring and Analysis of Dubai Emirate, UAE Using Multi-Temporal Remote Sensing Data. EPiC Ser. Eng. 2018, 3, 1435–1443. [Google Scholar]
Mohamed, M.M.; Elmahdy, S.I. Natural and anthropogenic factors affecting groundwater quality in the eastern region of the United Arab Emirates. Arab. J. Geosci. 2015, 8, 7409–7423. [Google Scholar] [CrossRef]
Mohamed, M.M.; Elmahdy, S.I. Natural and anthropogenic factors affecting groundwater quality in the eastern region of the United Arab Emirates. Arab. J. Geosci. 2015, 8, 7409–7423. [Google Scholar] [CrossRef]
Nas, B.; Berktay, A. Groundwater quality mapping in urban groundwater using GIS. Environ. Monit. Assess. 2008, 160, 215–227. [Google Scholar] [CrossRef] [PubMed]
Nóbrega, R.L.B.; Guzha, A.C.; Lamparter, G.; Amorim, R.S.S.; Couto, E.G.; Hughes, H.J.; Jungkunst, H.F.; Gerold, G. Impacts of land-use and land-cover change on stream hydrochemistry in the Cerrado and Amazon biomes. Sci. Total Environ. 2018, 635, 259–274. [Google Scholar] [CrossRef]
Patel, A., Vyas, D., Chaudhari, N., Patel, R., Patel, K., & Mehta, D. (2024). Novel approach for the LULC change detection using GIS & Google Earth Engine through spatiotemporal analysis to evaluate the urbanization growth of Ahmedabad city. Results in Engineering, 21, 101788.
Patra, S.; Sahoo, S.; Mishra, P.; Mahapatra, S.C. Impacts of urbanization on land use/cover changes and its probable implications on local climate and groundwater level. J. Urban Manag. 2018, 7, 70–84. [Google Scholar] [CrossRef]
Remote Sens. Environ. 185, 258–270. https://doi.org/10.1016/j.rse.2016.02.060.
Salem, A., Abduljaleel, Y., Dezső, J., & Lóczy, D. (2023). Integrated assessment of the impact of land use changes on groundwater recharge and groundwater level in the Drava floodplain, Hungary. Scientific Reports, 13(1), 5061.
Samy, I.E.; Mohamed, M.M. Natural hazards susceptibility mapping in the Kuala Lumpur, Malaysia: An assessment using remote sensing and geographic information system (GIS). Nat. Hazard. Risk 2012, 2012, 1–21. [Google Scholar]
Sanford, W., 2002. Recharge and groundwater models: an overview. In: Hydrogeology Journal, 10. Hydrogeology Journal, pp. 110–120. https://doi.org/10.1007/s10040-001-0173-5.
Siddik, M.S., Tulip, S.S., Rahman, A., Islam, Md.N., Haghighi, A.T., Mustafa, S.M.T., 2022. The impact of land use and land cover change on groundwater recharge in northwestern Bangladesh. J. Environ. Manag. 315, 115130 https://doi.org/10.1016/j.jenvman.2022.115130.
Siebert, J. Burke, J.M. Faures, K. Frenken, J. Hoogeveen, P.D.¨oll, and F.T. Portmann, 2010 global gw inventory. https://www.academia.edu/4351439/Seibert_et_al_ 2010_global_gw_inventory.
Simmers, I., 1997. Recharge of Phreatic Aquifers in (Semi-)Arid Areas. In: IAH Int. Contrib. Hydrogeol, 19. AA Balkema, Rotterdam, p. 277 p..
Sultan, M.; Sturchio, N.; Al Sefry, S.; Milewski, A.; Becker, R.; Nasr, I.; Sagintayev, Z. Geochemical, isotopic, and remote sensing constraints on the origin and evolution of the Rub Al Khali aquifer system, Arabian Peninsula. J. Hydrol. 2008, 356, 70–83. [Google Scholar] [CrossRef]
Takele, G.S., Gebre, G.S., Gebremariam, A.G., Engida, A.N., 2022. Hydrological modeling in the Upper Blue Nile basin using soil and water analysis tool (SWAT).
Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS journal of photogrammetry and remote sensing, 164, 152-170.
Temesgen, G., Amare, B., Abraham, M., 2014. Evaluations of land use/land cover changes and land degradation in Dera District, Ethiopia: GIS and remote sensingbased analysis. Int. J. Sci. Res. Environ. Sci. 2 (6), 199–208.
Tian, S.; Zhang, X.; Tian, J.; Sun, Q. Random Forest Classification of Wetland Landcovers from Multi-Sensor Data in the Arid Region of Xinjiang, China. Remote Sens. 2016, 8, 954.
Tikuye, B. G., Rusnak, M., Manjunatha, B. R., & Jose, J. (2023). Land use and land cover change detection using the random forest approach: The case of the Upper Blue Nile River basin, Ethiopia. Global Challenges, 7(10), 2300155.
Tola, B., & Deyassa, G. (2024). A modeling approach for evaluating and predicting the impacts of land use land cover changes on groundwater recharge in Walga Watershed, Upper Omo Basin, Central Ethiopia. Journal of Hydrology: Regional Studies, 51, 101659.
Tong, S., Liu, A., 2006. Modelling the hydrologic effects of land-use and climate changes. Int. J. Risk Assess. Manag. - Int. J. Risk Assess. Manag. 6, 344–368. https://doi.org/10.1504/IJRAM.2006.009543.
Vogelmann, J.E., Gallant, A.L., Shi, H., Zhu, Z., 2016. Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data.
Vorosmarty, C.J., Green, P., Salisbury, J., Lammers, R.B., 2000. Global water resources: vulnerability from climate change and population growth. Science 289 (5477), 284–288. https://doi.org/10.1126/science.289.5477.284.
Wang, S., Kang, S., Zhang, L., Li, F., 2008. Modelling hydrological response to different land-use and climate change scenarios in the Zamu River basin of northwest China, 22 (14), 2502–2510. https://doi.org/10.1002/HYP.6846.
Wang, S., Kang, S., Zhang, L., Li, F., 2008. Modelling hydrological response to different land-use and climate change scenarios in the Zamu River basin of northwest China, 22 (14), 2502–2510. https://doi.org/10.1002/HYP.6846.
Warku, F., Korme, T., Wedajo, G.K., Nedow, D., 2021. Impacts of land use/cover change and climate variability on groundwater recharge for upper Gibe watershed, Ethiopia. Sustain. Water Resour. Manag. 8 (1), 2 https://doi.org/10.1007/s40899-021-00588-8.
Weber, H.; Sciubba, J.D. The Effect of Population Growth on the Environment: Evidence from European Regions. Eur. J. Popul. 2018, 35, 379–402. [Google Scholar] [CrossRef] [PubMed]
Wingate, V.R.; Phinn, S.R.; Kuhn, N.; Bloemertz, L.; Dhanjal-Adams, K.L. Mapping Decadal Land Cover Changes in the Woodlands of North Eastern Namibia from 1975 to 2014 Using the Landsat Satellite Archived Data. Remote Sens. 2016, 8, 681.
Yanda P., Munishi P. (2007) Hydrologic and land use/cover change analysis for the Ruvu river (uluguru) and Sigi river (east usambara) watersheds. Dar es Salaam, Tanzania.
Zheng, Y.; Tang, L.; Wang, H. An Improved Approach for Monitoring Urban Built-up Areas by Combining NPP-VIIRS Nighttime Light, NDVI, NDWI, and NDBI. J. Clean. Prod. 2021, 328, 129488.