کارایی نانو ذرات آهن و پسماند سلولزی در اصلاح خاک آلوده به سرب و استقرار نهال بلندمازو
الموضوعات :محیا تفضلی 1 , سید محمد حجتی 2 , پوریا بی پروا 3 , یحیی کوچ 4 , نوربرت لمرسدورف 5
1 - دکتری جنگلداری، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
2 - دانشیار گروه جنگلداری، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران *(مسوول مکاتبات)
3 - دانشیار گروه علوم پایه، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
4 - استادیار گروه مرتعداری، دانشگاه تربیت مدرس، نور، ایران
5 - استاد گروه خاکشناسی مناطق معتدله، دانشگاه جورج آگوست گوتینگن، گوتینگن، آلمان
الکلمات المفتاحية: بلندمازو, اصلاح خاک, سرب, نانو ذرات آهن صفر ظرفیتی, پسماند سلولزی,
ملخص المقالة :
زمینه و هدف: باتوجه به آلوده شدن جنگل های شمال کشور به فلزات سنگین توسط فعالیت هایی مانند معدن کاوی، هدف این پژوهش استفاده از نانو ذرات آهن صفرظرفیتی و پسماند سلولزی در اصلاح خاک آلوده به سرب و استقرار نهال بلندمازو در آن بود. روش بررسی: نهال های یکساله بلندمازو در گل دان های پلاستیکی پرشده با خاک نهالستان در اسفند سال 1393 کاشته شدند. سرب با غلظت های صفر، 100، 200، 300 (میلی گرم در کیلوگرم)، با استفاده از نیترات سرب بهصورت محلول به گل دان ها اضافه شد. پسماند سلولزی با سطوح صفر، 10 (W1)، 20 (W2) و 30 (W2) درصد، در زمان کاشت به گل دان ها اضافه شد. نانوذرات آهن صفرظرفیتی با سطوح صفر، 1 (N1)، 2 (N2) و 3 (N3) میلی گرم در کیلوگرم، به خاک تزریق شد. قطر، ارتفاع، وزن خشک، زی توده نهال ها، غلظت قابل جذب سرب و کارایی اصلاح کننده ها در انتهای فصل رویش اندازه گیری شد. یافته ها: با افزایش سطوح اصلاحکننده ها (از 10 به 30 درصد پسماند سلولزی و از 1 به 3 میلی گرم بر کیلوگرم نانوذرات آهن) روند افزایشی در مقدار زی توده نهال در تمام سطوح آلودگی مشاهده شد. بالاترین کارایی برای تمام سطوح آلودگی در بالاترین سطح هر اصلاح کننده مشاهده شد. کارایی تیمار N3 برای سرب100: 5/79، سرب200: 4/84 و سرب300: 8/67 درصد و تیمار W3 برای سرب100: 6/55، سرب200: 98/74 و سرب300: 1/63 درصد بود. بحث و نتیجه گیری: استفاده از نانوذرات آهن صفرظرفیتی کارایی بهتری نسبت به پسماند سلولزی کاهش قابلیت جذب سرب داشت، بنابراین می توان با عملیات جنگلکاری گونه های بومی و استفاده از این اصلاح کننده ها در چاله کاشت به احیا جنگل ها در مناطق آلوده کمک کرد.
- Adriano, D. C., Wenzel, W. W., Vangronsveld, J., Bolan, N. S. 2004. Role of assisted natural remediation in environmental cleanup. Geoderma 122, 121-142.
- Kumpiene, J., Lagerkvist, A., Maurice, C., 2008. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – A review. Waste Management, 28, 215–225.
- Kabata-Pendias, A., 2010. Trace elements in soils and plants. CRC press.
- Abbott, D.E., Essington, M. E., Mullen, M. D., Ammons, J.T., 2001. Fly ash and lime stabilized biosolid mixtures in mine spoil reclamation: simulated weathering. Journal of Environmental Quality, 30, 608– 616.
- Meyer, D., Bhattacharyya, D., Bachas, L., Ritchie, SMC., 2004. Membrane-based Nanostructure Metals for Reductive Degradation of Hazardous Organics at Room Temperature. Proc. of EPA Nanotechnology Grantee workshop.
- Alloway, B. J., 1995. Heavy Metals in Soils, second ed. Blackie Academic and Professional, London.
- Bradl, H. B., 2004. Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science. 277, 1–18.
- Wan, G., Najeeb, U., Jilani, G., Naeem, M.S., Zhou, W., 2011. Calcium invigorates the cadmium-stressed Brassica napus L. plants by strengthening their photosynthetic system. Environmental Science Pollutant Research, 18, 1478–1486.
- Xenidis A, Stouraiti Ch, And Papassiopi N., 2010. Stabilization of Pb and As in soils by applying combined treatment with Phosphates and ferrous iron. Journal of Hazardous Materials, 117, 929-937.
- Paff, S. W., Bosilovich, B. E., 1995. Use of lead reclamation in secondary lead smelters for the remediation of lead contaminated sites. Journal of Hazardous Materials, 40,139–164.
- Kumpiene, J., Montesinos, I. C., Lagerkvist, A., Maurice C., 2007. Evaluation of the critical factors controlling stability of chromium, copper, arsenic and zinc in iron-treated soil. Chemosphere, 67, 410–417.
- Watanabe, T. Y., Murata, T., Nakamura, Y., Sakai, Y., Osaki, M., 2009. Effect of zero-valent iron application on cadmium uptake in rice plants grown in cadmium-contaminated soils, Journal of Plant Nutrition, 32, 1164–1172.
- Stegmann, R., Brunner, G., Calmano, W., Matz, G., 2001. Treatment of Contaminated Soil—Fundamentals, Analysis, Applications, Springer.
- Forsberg, L. S., Ledin, S., 2006. Effects of sewage sludge on pH and plant availability of metals in oxidizing sulphide mine tailings. Science of the Total Environment, 358, 21-35.
- Shipitalo, M. J., Bonta, J.V., 2008. Impact of using paper mill sludge for surface-mine reclamation on runoff water quality and plant growth. Journal of Environmental Quality, 37, 2351-2359.
- Shrestha, R.K., Lal, R., Jacinthe, P., 2009. Enhancing carbon and nitrogen sequestration in reclaimed soils through organic amendments and chiseling. SoilScience Society of America, 73,1004–1011.
- Liu, R., Zhang, H. and Lal, R., 2016. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients?. Water, Air, & Soil Pollution, 227, 42p.
- Nasiri, J., Gholami, A., Panahpour, E., 2013. Removal of cadmium from soil resources using stabilized zero-valent iron nanoparticles. Journal of Civil Engineering and Urbanism. 3, 338-341.
- Tiberg, C., Kumpiene, J., Gustafsson, J.P., Marsz, A., Persson, I., Mench, M. Kleja, D.B., 2016. Immobilization of Cu and As in two contaminated soils with zero-valent iron–Long-term performance and mechanisms. Applied Geochemistry, 67,144-152.
- Savasari, M., Emadi, M., Bahmanyar, M. A., Biparva, P., 2015. Optimization of Cd (II) removal from aqueous solution by ascorbic acid-stabilized zero valent iron nanoparticles using response surface methodology. Journal of Industrial and Engineering Chemistry. 25, 1403-1409.
_||_
- Adriano, D. C., Wenzel, W. W., Vangronsveld, J., Bolan, N. S. 2004. Role of assisted natural remediation in environmental cleanup. Geoderma 122, 121-142.
- Kumpiene, J., Lagerkvist, A., Maurice, C., 2008. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – A review. Waste Management, 28, 215–225.
- Kabata-Pendias, A., 2010. Trace elements in soils and plants. CRC press.
- Abbott, D.E., Essington, M. E., Mullen, M. D., Ammons, J.T., 2001. Fly ash and lime stabilized biosolid mixtures in mine spoil reclamation: simulated weathering. Journal of Environmental Quality, 30, 608– 616.
- Meyer, D., Bhattacharyya, D., Bachas, L., Ritchie, SMC., 2004. Membrane-based Nanostructure Metals for Reductive Degradation of Hazardous Organics at Room Temperature. Proc. of EPA Nanotechnology Grantee workshop.
- Alloway, B. J., 1995. Heavy Metals in Soils, second ed. Blackie Academic and Professional, London.
- Bradl, H. B., 2004. Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science. 277, 1–18.
- Wan, G., Najeeb, U., Jilani, G., Naeem, M.S., Zhou, W., 2011. Calcium invigorates the cadmium-stressed Brassica napus L. plants by strengthening their photosynthetic system. Environmental Science Pollutant Research, 18, 1478–1486.
- Xenidis A, Stouraiti Ch, And Papassiopi N., 2010. Stabilization of Pb and As in soils by applying combined treatment with Phosphates and ferrous iron. Journal of Hazardous Materials, 117, 929-937.
- Paff, S. W., Bosilovich, B. E., 1995. Use of lead reclamation in secondary lead smelters for the remediation of lead contaminated sites. Journal of Hazardous Materials, 40,139–164.
- Kumpiene, J., Montesinos, I. C., Lagerkvist, A., Maurice C., 2007. Evaluation of the critical factors controlling stability of chromium, copper, arsenic and zinc in iron-treated soil. Chemosphere, 67, 410–417.
- Watanabe, T. Y., Murata, T., Nakamura, Y., Sakai, Y., Osaki, M., 2009. Effect of zero-valent iron application on cadmium uptake in rice plants grown in cadmium-contaminated soils, Journal of Plant Nutrition, 32, 1164–1172.
- Stegmann, R., Brunner, G., Calmano, W., Matz, G., 2001. Treatment of Contaminated Soil—Fundamentals, Analysis, Applications, Springer.
- Forsberg, L. S., Ledin, S., 2006. Effects of sewage sludge on pH and plant availability of metals in oxidizing sulphide mine tailings. Science of the Total Environment, 358, 21-35.
- Shipitalo, M. J., Bonta, J.V., 2008. Impact of using paper mill sludge for surface-mine reclamation on runoff water quality and plant growth. Journal of Environmental Quality, 37, 2351-2359.
- Shrestha, R.K., Lal, R., Jacinthe, P., 2009. Enhancing carbon and nitrogen sequestration in reclaimed soils through organic amendments and chiseling. SoilScience Society of America, 73,1004–1011.
- Liu, R., Zhang, H. and Lal, R., 2016. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients?. Water, Air, & Soil Pollution, 227, 42p.
- Nasiri, J., Gholami, A., Panahpour, E., 2013. Removal of cadmium from soil resources using stabilized zero-valent iron nanoparticles. Journal of Civil Engineering and Urbanism. 3, 338-341.
- Tiberg, C., Kumpiene, J., Gustafsson, J.P., Marsz, A., Persson, I., Mench, M. Kleja, D.B., 2016. Immobilization of Cu and As in two contaminated soils with zero-valent iron–Long-term performance and mechanisms. Applied Geochemistry, 67,144-152.
- Savasari, M., Emadi, M., Bahmanyar, M. A., Biparva, P., 2015. Optimization of Cd (II) removal from aqueous solution by ascorbic acid-stabilized zero valent iron nanoparticles using response surface methodology. Journal of Industrial and Engineering Chemistry. 25, 1403-1409.