جداسازی و شناسایی مولکولی باکتریهای تجزیهکننده ی تیوسیانات از رسوبات دریاچه مهارلو استان فارس
الموضوعات :فهیمه مطلبی 1 , فرشید کفیل زاده 2
1 - کارشناس ارشد، گروه میکروبیولوژی، واحد جهرم، دانشگاه آزاد اسلامی، جهرم، ایران.
2 - استاد، گروه میکروبیولوژی، واحد جهرم، دانشگاه آزاد اسلامی، جهرم، ایران*(مسوول مکاتبات)
الکلمات المفتاحية: باسیلوس اسفریکوس, میکروکوکوس لوتئوس, مهارلو, تیوسیانات, PCR,
ملخص المقالة :
زمینه و هدف:تیوسیانات ترکیبی یک کربنه معدنی وعضو مهمی از خانواده سیانید میباشد. تیوسیاناتاز منابع طبیعی و صنعتی مشتق شده ودر حجم وسیعی توسط صنایع استخراج فلزات و کک تولید می شود. این ترکیب سمی باعث بروز اثرات نامطلوبی در موجودات زنده می شود. با توجه به وجود این ترکیب سمی در دریاچه مهارلو، این پژوهش باهدف جداسازی و شناسایی باکتری های تجزیه کننده تیوسیانات از رسوبات دریاچه مهارلو صورت گرفت. روش بررسی:نمونه برداری از پنج ایستگاه و طی دو فصل، در تابستان 94 و بهار 95 انجام گردید. جداسازی باکتری های تجزیه کننده تیوسیانات در محیط M9 انجام شد.پس از شناسایی فیزیولوژی و بیوشیمیایی باکتری های تجزیه کننده تیوسیانات، از تست های حداقل غلظت بازدارندگی،سینتیک رشد و میزان تجزیه تیوسیانات توسط باکتری های مقاوم استفادهشد. درپایان، باکتری های مقاوم با روش PCRبراساس ژن S rRNA16، شناسایی شدند. یافته ها: نتایج نشان داد که 9 گونه باکتریایی توانایی تجزیه تیوسیانات در دریاچه مهارلو را داشتند. در این میان دو گونه باکتریایی Bacillus sphaericus و Micrococcus luteus دارای بالاترین پتانسیل درحذف و تجزیه تیوسیانات بوده و بالاترین مقاومت (50 گرم در لیتر) را نسبت به سایر باکتریها نشان دادند. بیش ترین قدرت تجزیه کنندگی تیوسیانات، مربوط به B. sphaericus(66/66 درصد) وM. luteus (50 درصد) بود که به ترتیب با ارزش شباهت 97 و 92 درصد با سویه هایPlanococcus citreus strain NBRC 15849وBacillus aerius strain 24Kشباهت داشتند. بحث و نتیجه گیری: یافته های تحقیق حاضر نشان داد که دریاچه مهارلو دارای باکتری های قدرت مند در تجزیه تیوسیانات بوده به طوری که B. sphaericus تا 66/66 درصد قادر به تجزیه این ترکیب می باشد. با فراهم نمودن بستر مناسب جهت رشد این باکتری ها می توان از آن ها جهت سمیت زدایی و حذف تیوسیانات از آب های آلوده استفاده کرد
- Muthukumaran, V., 2011. Isolation and characterisation of Thiocyanate degrading bacteria from sago effluent contaminated site. Thesis submitted to Bharathidasan University for the award of Doctor of Philosophy.
- Kavitha, G., King, P., Sheshamma, G., Kalpana, P., Naidu, DA., 2013. Acute toxicity of thiocyanate using Danio rerio and microbial degradation of thiocyanate. International journal of enjineering research and science and technology.Vol. 2, pp.47-61.
- Mohseni, M., Firuzyar, S., Nazari, O.L., 2014. Isolation and characterization of cyanide degrading Bacillus sp.MF3 under alkaline condition. Journal of Molecular and Cellular Research (Iranian journal of biology), Vol. 28, pp.384-394. (In Persian)
- Sorokin, D. Y., Tourova, T. P., Lysenko, A. M., Kuenen J. G., 2001. Microbialthiocyanate utilization under highly alkaline conditions. Applied and Environmental Microbiology, Vol. 67, No. 2, pp. 528-538.
- Patil, Y, B., 2013. Development of a bioremediation technology for the removal of thiocyanate from aqueous industrial wastes using metabolically active microorganisms. In: Applied Bioremediation-Active and Passive Approaches (Editors Yogesh B Patil and Prakash Rao), Intech Open Science Publisher.
- Gould, W, D., King, M., Mohapatra, B, R., Cameron, R, A., Kapoor, A., Koren, D, W., 2012. A critical reviewon destruction of thiocyanate in mining effluents. Minerals Engineering, vol. 34, pp. 38-47.
- Lee, C., Kim, J., Chang, J., Hwang, S., 2003. Isolation and identification of thiocyanate utilizing chemolithotrophs from gold mine soils. Biodegradation, Vol. 14, pp. 183-188.
- Patil, Y. B., 2011. Utilization ofthiocyanate (SCN) by a metabolically active bacterial consortium as the sole source of nitrogen. International Journal of Chemical, Environmental & Pharmaceutical Research, Vol. 2, No.1, pp. 44-48.
- Kafilzadeh, F., Khosrobak, A., Jamali, H., 2015. Degrading Bacteria from the Soil around Oil Company of Andimeshk and Investigation of Their Growth Kinetics. Polycyclic Aromatic Compounds, Vol. 36, pp.58-71.
- Sorokin, D, Y., Kuenen, J, G., Muyzer, G., 2011. The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Frontiers in microbiology, Vol. 2, pp. 1-16.
- Combarros, R, G., Collado, S., Laca, A., Díaz, M., 2016. Understanding the simultaneous biodegradation of thiocyanate and salicylic acid by Paracoccus thiocyanatus and Pseudomonas putida. International Journal of Environmental Science and Technology, Vol. 13, pp. 649-662.
- Khamar, Z., Makhdoumi-Kakhki, A., Gharaie, M, M., 2015. Remediation of cyanide from the gold mine tailing pond by a novel bacterial co-culture, International Biodeterioration & Biodegradation, Vol. 99, pp. 123-128.
- Bouari, A,-R., Begum, S, A., Egiebor, N, O., 2013. Bioremediation of Complex Cyanide Contaminated Wastewater using Pseudomonas Fluorescens Pf-5. In International Journal of Engineering Research and Technology. ESRSA Publications. Vol. 2, pp. 1485-1493.
- 14-Kafilzadeh, F., Aram, M., Sharifi, A., Naghmachi. M.,2012. Isolation and survey growth kinetics of mercury resistant bacteria in Lake Maharloo. Iran J Med Microbiol.Vol. 6, pp. 28-38. (In Persian)
- El-Sheekh, M, M., Hamouda, R, A., Nizam A, A., 2013. Biodegradation of crude oil by Scenedesmus obliquus and Chlorella vulgaris growing under heterotrophic conditions. International Biodeterioration & Biodegradation , Vol. 82, pp. 67-72.
- SouzaFagundes, EM., Rosa, L, H., Gomes, N., Santos, M, H., Pimentel, P,F., 2004. Thiocyanate degradation by pure and mixed cultures of microorganisms, Brazilian Journal of Microbiology; Vol. 35, No. 4, pp. 333-336.
- Patil, Y. B., 2006.Isolation of thiocyanate degrading chemoheterotrophic bacterial consortium, Nature Environment and Pollution Technology, Vol.5,pp. 135-138.
- Mekuto, L., Ntwampe, S, K, O., Kena, M., Golela, M, T., Amodu, O, S., 2016. Free cyanide and thiocyanate biodegradation by Pseudomonas aeruginosa STK 03 capableof heterotrophic nitrification under alkaline conditions, 3 Biotech, vol. 6,pp. 1-7.
- Mekuto, L., Jackson, V, A., Ntwampe, S, K, O., 2014. Biodegradation of free cyanide using Bacillus sp. consortium dominated by Bacillus safensis, Lichenformis and Tequilensis strains: A bioprocess supported solely with whey. Journal of Bioremediation & Biodegradation,
http://hdl.handle.net/11189/2038
- Patil, Y. B., 2008b. Thiocyanate degradation by pure and mixed bacterial cultures, Bioinfolet, Vol. 5, No. 3, pp. 308-309.
- 21. Mohseni, M., Firuzyar, S., 2014. Biodegradation of cyanide using Serratia sp. isolated from contaminated soil of gold mine in Takab. Biological Journal of Microorganism,Vol. 3, No.10, pp.75-86.(In Persian)
- Akhavan S. A., Ebrahimi, A.F., Minaei, T.D., 2009.Investigation of Toluene Biodegradation by Bacillus Consortium in Toluene Contaminated Soils. Journal of Microbiology, Vol. 1, No. 4, pp. 7-19. (In Persian)
- Igeno, M, I., Orovengua, E., Guijo, M, I., Merchán, F., Quesada, A., Blasco, R., 2007. Biodegradation of cyanide-containing wastes by Pseudomonas pseudoalcaligenes CECT5344. Communicating Current Research and Educational Topics and Trends in Applied Microbiology,Vol. 1, pp. 100-107.
_||_
- Muthukumaran, V., 2011. Isolation and characterisation of Thiocyanate degrading bacteria from sago effluent contaminated site. Thesis submitted to Bharathidasan University for the award of Doctor of Philosophy.
- Kavitha, G., King, P., Sheshamma, G., Kalpana, P., Naidu, DA., 2013. Acute toxicity of thiocyanate using Danio rerio and microbial degradation of thiocyanate. International journal of enjineering research and science and technology.Vol. 2, pp.47-61.
- Mohseni, M., Firuzyar, S., Nazari, O.L., 2014. Isolation and characterization of cyanide degrading Bacillus sp.MF3 under alkaline condition. Journal of Molecular and Cellular Research (Iranian journal of biology), Vol. 28, pp.384-394. (In Persian)
- Sorokin, D. Y., Tourova, T. P., Lysenko, A. M., Kuenen J. G., 2001. Microbialthiocyanate utilization under highly alkaline conditions. Applied and Environmental Microbiology, Vol. 67, No. 2, pp. 528-538.
- Patil, Y, B., 2013. Development of a bioremediation technology for the removal of thiocyanate from aqueous industrial wastes using metabolically active microorganisms. In: Applied Bioremediation-Active and Passive Approaches (Editors Yogesh B Patil and Prakash Rao), Intech Open Science Publisher.
- Gould, W, D., King, M., Mohapatra, B, R., Cameron, R, A., Kapoor, A., Koren, D, W., 2012. A critical reviewon destruction of thiocyanate in mining effluents. Minerals Engineering, vol. 34, pp. 38-47.
- Lee, C., Kim, J., Chang, J., Hwang, S., 2003. Isolation and identification of thiocyanate utilizing chemolithotrophs from gold mine soils. Biodegradation, Vol. 14, pp. 183-188.
- Patil, Y. B., 2011. Utilization ofthiocyanate (SCN) by a metabolically active bacterial consortium as the sole source of nitrogen. International Journal of Chemical, Environmental & Pharmaceutical Research, Vol. 2, No.1, pp. 44-48.
- Kafilzadeh, F., Khosrobak, A., Jamali, H., 2015. Degrading Bacteria from the Soil around Oil Company of Andimeshk and Investigation of Their Growth Kinetics. Polycyclic Aromatic Compounds, Vol. 36, pp.58-71.
- Sorokin, D, Y., Kuenen, J, G., Muyzer, G., 2011. The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Frontiers in microbiology, Vol. 2, pp. 1-16.
- Combarros, R, G., Collado, S., Laca, A., Díaz, M., 2016. Understanding the simultaneous biodegradation of thiocyanate and salicylic acid by Paracoccus thiocyanatus and Pseudomonas putida. International Journal of Environmental Science and Technology, Vol. 13, pp. 649-662.
- Khamar, Z., Makhdoumi-Kakhki, A., Gharaie, M, M., 2015. Remediation of cyanide from the gold mine tailing pond by a novel bacterial co-culture, International Biodeterioration & Biodegradation, Vol. 99, pp. 123-128.
- Bouari, A,-R., Begum, S, A., Egiebor, N, O., 2013. Bioremediation of Complex Cyanide Contaminated Wastewater using Pseudomonas Fluorescens Pf-5. In International Journal of Engineering Research and Technology. ESRSA Publications. Vol. 2, pp. 1485-1493.
- 14-Kafilzadeh, F., Aram, M., Sharifi, A., Naghmachi. M.,2012. Isolation and survey growth kinetics of mercury resistant bacteria in Lake Maharloo. Iran J Med Microbiol.Vol. 6, pp. 28-38. (In Persian)
- El-Sheekh, M, M., Hamouda, R, A., Nizam A, A., 2013. Biodegradation of crude oil by Scenedesmus obliquus and Chlorella vulgaris growing under heterotrophic conditions. International Biodeterioration & Biodegradation , Vol. 82, pp. 67-72.
- SouzaFagundes, EM., Rosa, L, H., Gomes, N., Santos, M, H., Pimentel, P,F., 2004. Thiocyanate degradation by pure and mixed cultures of microorganisms, Brazilian Journal of Microbiology; Vol. 35, No. 4, pp. 333-336.
- Patil, Y. B., 2006.Isolation of thiocyanate degrading chemoheterotrophic bacterial consortium, Nature Environment and Pollution Technology, Vol.5,pp. 135-138.
- Mekuto, L., Ntwampe, S, K, O., Kena, M., Golela, M, T., Amodu, O, S., 2016. Free cyanide and thiocyanate biodegradation by Pseudomonas aeruginosa STK 03 capableof heterotrophic nitrification under alkaline conditions, 3 Biotech, vol. 6,pp. 1-7.
- Mekuto, L., Jackson, V, A., Ntwampe, S, K, O., 2014. Biodegradation of free cyanide using Bacillus sp. consortium dominated by Bacillus safensis, Lichenformis and Tequilensis strains: A bioprocess supported solely with whey. Journal of Bioremediation & Biodegradation,
http://hdl.handle.net/11189/2038
- Patil, Y. B., 2008b. Thiocyanate degradation by pure and mixed bacterial cultures, Bioinfolet, Vol. 5, No. 3, pp. 308-309.
- 21. Mohseni, M., Firuzyar, S., 2014. Biodegradation of cyanide using Serratia sp. isolated from contaminated soil of gold mine in Takab. Biological Journal of Microorganism,Vol. 3, No.10, pp.75-86.(In Persian)
- Akhavan S. A., Ebrahimi, A.F., Minaei, T.D., 2009.Investigation of Toluene Biodegradation by Bacillus Consortium in Toluene Contaminated Soils. Journal of Microbiology, Vol. 1, No. 4, pp. 7-19. (In Persian)
- Igeno, M, I., Orovengua, E., Guijo, M, I., Merchán, F., Quesada, A., Blasco, R., 2007. Biodegradation of cyanide-containing wastes by Pseudomonas pseudoalcaligenes CECT5344. Communicating Current Research and Educational Topics and Trends in Applied Microbiology,Vol. 1, pp. 100-107.