اثر ضد باکتریایی نانو ذرات اکسید آهن (Fe3O4) در تصفیه آب
الموضوعات :
نعیمه شعبانی لکرانی
1
,
افشین جوادی
2
,
هدی جعفری زاده- مالمیری
3
,
حمید میرزایی
4
,
جاوید صادقی
5
1 - دانشآموخته دکترای بهداشت مواد غذایی، گروه بهداشت مواد غذایی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
2 - دانشیار گروه بهداشت مواد غذایی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
3 - دانشیار گروه مهندسی شیمی، دانشگاه صنعتی سهند، تبریز، ایران
4 - دانشیار گروه بهداشت مواد غذایی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
5 - استادیار گروه میکروبشناسی، دانشگاه علوم پزشکی تبریز، تبریز، ایران
تاريخ الإرسال : 16 الثلاثاء , ربيع الثاني, 1442
تاريخ التأكيد : 27 الإثنين , جمادى الأولى, 1442
تاريخ الإصدار : 06 الإثنين , جمادى الأولى, 1442
الکلمات المفتاحية:
تصفیه آب,
ضد باکتری,
نانو ذرات اکسید آهن,
ملخص المقالة :
در برنامههای کاربردی آب سیستم های نامناسب زهکشی سبب افزایش آلودگی منابع آب می شود این مطالعه باهدف یافتن ضدعفونیکننده سازگار با محیطزیست در مرحله منعقد سازی در تصفیهخانههای آب آشامیدنی انجامشده است. در این مطالعه نانو ذرات اکسید آهن به روش هم رسوبی سنتز گردید و فعالیت ضد باکتریایی نانو ذرات اکسید آهن سنتز شده بر روی شش گونه از باکتریهای مهم باکتریایی (شامل اشرشیا کولای و انتروکوکوس فیکالیس و کلبسیلا پنومونیه و سودوموناس آئروجینوزا، باسیلوس سرئوس و استافیلوکوکوس اورئوس) مورد ارزیابی قرار گرفت. این مطالعه نشان داد که بیشترین اثر نانو ذرات اکسید آهن سنتز شده با 07/0 MIC<میکروگرم بر میلیلیتر در برابر باسیلوس سرئوس و انتروکوکوس فیکالیس است. بعلاوه، نانو ذرات اکسید آهن دارای فعالیت ضد باکتریایی علیه استافیلوکوکوس آرئوس با 3/0 =MIC میکروگرم در میلیلیتر و در کلبسیلا پنومونیه 25/1MIC= و سودوموناس آئروجینوزا و اشرشیاکلی 6/0 =MIC میکروگرم در میلیلیتر بود. نتایج MBC نشان داد که نانو ذرات اکسید آهن توانست 9/99 درصد از باکتری های اشرشیاکلی و استافیلوکوکوس آرئوس در غلظت 25/1 میکروگرم در میلیلیتر و کلبسیلا پنومونیه در غلظت 5/2 میکروگرم در میلیلیتر از باکتریهای را از بین ببرد. نتایج بهدستآمده پتانسیل ضد باکتریایی از نانو ذرات را برای استفاده در تصفیه آب نشان میدهد. به نظر میرسد که استفاده از نانو ذرات Fe3O4 بهعنوان جاذب در فرآیند تصفیه آب میتواند یک جایگزین کارآمد و اقتصادی برای ضدعفونی کردن آب در مراحل اولیه تصفیه آب باشد.
المصادر:
Abdeen, S., Isaac, R.R., Geo, S., Sornalekshmi, S., Arsula R.and Praseetha, P.K. (2013). Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi Fusarium oxysporum and Actinomyces sp. on human pathogens, Nano Biomedicine & Engineering, 5 (1): 39–45.
Alsamhary, K., Al-Enazi, N., Alshehri, V. and Ameen, A. (2019). Gold nanoparticles synthesised by flavonoid tricetin as a potential antibacterial nanomedicine to treat respiratory infections causing opportunistic bacterial pathogens. Microbial Pathogenesis. S0882-4010(19): 31129-5.
Ansari, sh. A.. Oves, M. Satar R. Khan K. Ahmad, S.I and et al. (2017). Antibacterial activity of iron oxide nanoparticles synthesized by co -precipitation technology against Bacillus cereus and Klebsiella pneumoniae. Chemical Technology, 4(19): 110-115.
Arora, A.K., Sharma, M., Kumari, R., Jaswal, V.S and Kumar, P. (2014). Synthesis, characterizationand magnetic studies of α-Iron oxide nanoparticles. Nanotechnology, 474909, 7.
Bellova, A., Bystrenova,E., Koneracka, M., Kopcansky, P., Valle, F. and Tomasovicova, N.(2010). Effect of Fe3O4 magnetic nanoparticles on lysozyme amyloid aggregation. Nanotechnology 21.065103.
Bezza,F. A., Tichapondwa, Sh. M. and Chirwa, EM. N. (2020). Fabrication of monodispersed copper oxide nanoparticles with potentialapplication as antimicrobial agents. Scientific Reports - Nature, 10: 16680.
Choi, S., Britigan, B,and Narayanasamy, P.(2019). Iron/Heme Metabolism-Targeted Gallium (III) Nanoparticles Are Activeagainst Extracellular and Intracellular Pseudomonas aeruginosa and Acinetobacter Baumannii. Antimicrob Agents Chemother. 63(4): e02643-18.
Craun, G.F.(1986). Statistics of Water borne Disease in the United States. CRC Press, Inc, Boca Raton, Florida.
Das, S., Diyali, S., Vinothini, G., Perumalsamy, B., Balakrishnan, G. and Ramasamy,T. (2020). Synthesis, morphological analysis, antibacterial activity of iron oxidenanoparticles and the cytotoxic effect on lung cancer cell line. Heliyon Journal, 6(9): e04953.
Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M. and Morelli, G. (2015). Silver nanoparticles as potential antibacterial agents. Molecules Journal, 20(5): 8856–8874.
Gauthier, F and Archibald, F. (2001). The ecology of “Faecal indicator” Bacteria commonlyfound in pulp and paper mill water systems. Water research. Vol. 35(9):2207-2218.
Gomez, N.T., Nava, O., Argueta-Figueroa, L., García-Contreras, R., Baeza-Barrera, A and Vilchis-Nestor,A.R.(2019). Shape Tuning of Magnetite Nanoparticles Obtained by Hydrothermal Synthesis: Effect of Temperature. Nanomaterials.10.1155. (15).
Ifeanyichukwu, U.L., Fayemi, O.E. and Ateba, C.N. (2020). Green Synthesis of Zinc Oxide Nanoparticles from Pomegranate Punica granatum Extracts and Characterization of Their AntibacterialActivity. Molecules journal, 25(19): 4521.
Ikhile, M.I,. Barnared, T.G. and Ngila, J.C. (2017). Potential application of synthesized ferrocenylimines compounds for the elimination of bacteria in water. Physics and Chemistry, 100: 121-125.
Kon, K. and Rai, M. (2013). Metallic nanoparticles: mechanism of antibacterial action and infl uencing factors. Comparative Clinical Pathology. 2(3), 160–2174.
Li, H., Chen, Q., Zhao, J. and Urmila, K. (2015). Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci. Rep, 5(5), 11033–11040.
López, E. S., Gomes, D., Esteruelas, G., Bonilla, L., Machado, A. L. L and Galindo, R. (2020). Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials Basel, 10(2): 292.
Masadeh, M.M., Karasneh, G. A., Al-Akhras, M.A., Albiss, B.A.,Aljarah, K. M. and Al-azzam, S. (2015). Cerium oxide and iron oxide nanoparticles abolish the antibacterialactivity of ciprofloxacin against gram positive and gram negative biofilmbacteria. Cytotechnology journal, 67(3): 427–435.
Medema, G.J., Shaw, S., Waite, M., Snozzi, M., Morreau, A. and Grabow, W. (2003). Catchment haracteristics and source water quality. In: Assessing Microbial Safety of Drinking Water. Improving Approaches and Method. WHO & OECD, IWA publishing, London, UK. 111-158.
Mohamed, Y.M., Azzam, A.M., Amin, B.H. and Safwat, N.A. (2015). Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity. Biotechnology and applied biochemistry.14 (14):1234–1241.
Moshafi, M. H., Ranjbar, M. and Ilbeigi, G. (2019). Biotemplate of albumen for synthesized iron oxide quantum dotsnanoparticles (QDNPs) and investigation of antibacterial effect againstpathogenic microbial strains. International Journal of Nanomedicine, 14: 3273–3282.
Murray, P., Baron, R., Pfauer.E.J., Tenoyer, M., Yolken, F.C and Robert, H. (1999) Editors Manual of clinical Microbiology. 7th ed. Philadelphia: American Society for Microbiology.
Parvekar, P., Palaskar, J., Metgud, S., Maria, R and Dutta, S. (2020). The minimum inhibitory concentration (MIC) and minimum bactericidalconcentration (MBC) of silver nanoparticles against Staphylococcusaureus Biomater. Clinical, Cosmetic and Investigational Dentistry, 7(1): 105–109.
Peavy Howard, s., Row Donald, R. and George T. (1985). Environmental Engineering. Mc Graw-Hill, (No. 628 P4).
Pulit, J., Banach, M., Szczyglowska, R. and Bryk, M. (2013). Silver Nanoparticles as an effective biocidal factor. Acta Biochim. Polonica, 60 (4): 795–798.
Reem, K.F., Labena, A., Fakhry,S.H Safwat G., Diab,A and Atta, E.M. (2019). Antimicrobial Activity of Hybrids Terpolymers Based on MagnetiteHydrogel Nanocomposites. Materials Journal. 12(21): 3604.
Shabani, N., Javadi,A., Jafarizadeh Malmiri, H, Mirzaie,H and Sadeghi J. (2020). Potential application of iron oxide nanoparticles synthesized by co-precipitation technology as a coagulant for water treatment in settling tanks Mining, Metallurgy & Exploration.
Shazia,P., Wania, A.H., Shahb,M. A., Devib, H. S., Bhata, M.Y. and Abdullah, J.(2018). Characterization and antifungal activity of iron oxide nanoparticles. Microbial Pathogenesis, 115 287–292.
Shabani L.N., Shayegh. J and Sadegh. j. (2018). Frequency of blaTEM ،blaSHV, and blaCTX-M genes encoded extended-spectrum betalactamases in Escherichia coli isolates collected from groundwater in East Azerbaijan province in 2014. Med J Tabriz Uni Med Sciences Health Services, 40(2):57-63.
Thukkaram, M., Sitaram, S. K., annaiyan, S. K., Subbiahdoss, G. (2014). Antibacterial Efficacy of Iron-Oxide Nanoparticles against Biofilms on Different Biomaterial Surfaces. Biomaterials science and engineering, Article ID 716080, 6.
Vogel, T.M., Criddle, C.S., McCarty, P.L. (1987). Transformations of halogenated aliphatic compounds. Environmental science & technology. 21(8): 722-736.
Zomorodian,K., Veisi,H., Mousavi, S.M., Sadeghi Ataabadi, M., Yazdanpanah, S. andBagheri,J.(2018). Modified magnetic nanoparticles by PEG-400-immobilized Agnanoparticles (Fe O@PEG–Ag) as a core/shell nanocomposite andevaluation of its antimicrobial activity. International Journal of Nanomedicine, 13: 3965–3973.
_||_
Abdeen, S., Isaac, R.R., Geo, S., Sornalekshmi, S., Arsula R.and Praseetha, P.K. (2013). Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi Fusarium oxysporum and Actinomyces sp. on human pathogens, Nano Biomedicine & Engineering, 5 (1): 39–45.
Alsamhary, K., Al-Enazi, N., Alshehri, V. and Ameen, A. (2019). Gold nanoparticles synthesised by flavonoid tricetin as a potential antibacterial nanomedicine to treat respiratory infections causing opportunistic bacterial pathogens. Microbial Pathogenesis. S0882-4010(19): 31129-5.
Ansari, sh. A.. Oves, M. Satar R. Khan K. Ahmad, S.I and et al. (2017). Antibacterial activity of iron oxide nanoparticles synthesized by co -precipitation technology against Bacillus cereus and Klebsiella pneumoniae. Chemical Technology, 4(19): 110-115.
Arora, A.K., Sharma, M., Kumari, R., Jaswal, V.S and Kumar, P. (2014). Synthesis, characterizationand magnetic studies of α-Iron oxide nanoparticles. Nanotechnology, 474909, 7.
Bellova, A., Bystrenova,E., Koneracka, M., Kopcansky, P., Valle, F. and Tomasovicova, N.(2010). Effect of Fe3O4 magnetic nanoparticles on lysozyme amyloid aggregation. Nanotechnology 21.065103.
Bezza,F. A., Tichapondwa, Sh. M. and Chirwa, EM. N. (2020). Fabrication of monodispersed copper oxide nanoparticles with potentialapplication as antimicrobial agents. Scientific Reports - Nature, 10: 16680.
Choi, S., Britigan, B,and Narayanasamy, P.(2019). Iron/Heme Metabolism-Targeted Gallium (III) Nanoparticles Are Activeagainst Extracellular and Intracellular Pseudomonas aeruginosa and Acinetobacter Baumannii. Antimicrob Agents Chemother. 63(4): e02643-18.
Craun, G.F.(1986). Statistics of Water borne Disease in the United States. CRC Press, Inc, Boca Raton, Florida.
Das, S., Diyali, S., Vinothini, G., Perumalsamy, B., Balakrishnan, G. and Ramasamy,T. (2020). Synthesis, morphological analysis, antibacterial activity of iron oxidenanoparticles and the cytotoxic effect on lung cancer cell line. Heliyon Journal, 6(9): e04953.
Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M. and Morelli, G. (2015). Silver nanoparticles as potential antibacterial agents. Molecules Journal, 20(5): 8856–8874.
Gauthier, F and Archibald, F. (2001). The ecology of “Faecal indicator” Bacteria commonlyfound in pulp and paper mill water systems. Water research. Vol. 35(9):2207-2218.
Gomez, N.T., Nava, O., Argueta-Figueroa, L., García-Contreras, R., Baeza-Barrera, A and Vilchis-Nestor,A.R.(2019). Shape Tuning of Magnetite Nanoparticles Obtained by Hydrothermal Synthesis: Effect of Temperature. Nanomaterials.10.1155. (15).
Ifeanyichukwu, U.L., Fayemi, O.E. and Ateba, C.N. (2020). Green Synthesis of Zinc Oxide Nanoparticles from Pomegranate Punica granatum Extracts and Characterization of Their AntibacterialActivity. Molecules journal, 25(19): 4521.
Ikhile, M.I,. Barnared, T.G. and Ngila, J.C. (2017). Potential application of synthesized ferrocenylimines compounds for the elimination of bacteria in water. Physics and Chemistry, 100: 121-125.
Kon, K. and Rai, M. (2013). Metallic nanoparticles: mechanism of antibacterial action and infl uencing factors. Comparative Clinical Pathology. 2(3), 160–2174.
Li, H., Chen, Q., Zhao, J. and Urmila, K. (2015). Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci. Rep, 5(5), 11033–11040.
López, E. S., Gomes, D., Esteruelas, G., Bonilla, L., Machado, A. L. L and Galindo, R. (2020). Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials Basel, 10(2): 292.
Masadeh, M.M., Karasneh, G. A., Al-Akhras, M.A., Albiss, B.A.,Aljarah, K. M. and Al-azzam, S. (2015). Cerium oxide and iron oxide nanoparticles abolish the antibacterialactivity of ciprofloxacin against gram positive and gram negative biofilmbacteria. Cytotechnology journal, 67(3): 427–435.
Medema, G.J., Shaw, S., Waite, M., Snozzi, M., Morreau, A. and Grabow, W. (2003). Catchment haracteristics and source water quality. In: Assessing Microbial Safety of Drinking Water. Improving Approaches and Method. WHO & OECD, IWA publishing, London, UK. 111-158.
Mohamed, Y.M., Azzam, A.M., Amin, B.H. and Safwat, N.A. (2015). Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity. Biotechnology and applied biochemistry.14 (14):1234–1241.
Moshafi, M. H., Ranjbar, M. and Ilbeigi, G. (2019). Biotemplate of albumen for synthesized iron oxide quantum dotsnanoparticles (QDNPs) and investigation of antibacterial effect againstpathogenic microbial strains. International Journal of Nanomedicine, 14: 3273–3282.
Murray, P., Baron, R., Pfauer.E.J., Tenoyer, M., Yolken, F.C and Robert, H. (1999) Editors Manual of clinical Microbiology. 7th ed. Philadelphia: American Society for Microbiology.
Parvekar, P., Palaskar, J., Metgud, S., Maria, R and Dutta, S. (2020). The minimum inhibitory concentration (MIC) and minimum bactericidalconcentration (MBC) of silver nanoparticles against Staphylococcusaureus Biomater. Clinical, Cosmetic and Investigational Dentistry, 7(1): 105–109.
Peavy Howard, s., Row Donald, R. and George T. (1985). Environmental Engineering. Mc Graw-Hill, (No. 628 P4).
Pulit, J., Banach, M., Szczyglowska, R. and Bryk, M. (2013). Silver Nanoparticles as an effective biocidal factor. Acta Biochim. Polonica, 60 (4): 795–798.
Reem, K.F., Labena, A., Fakhry,S.H Safwat G., Diab,A and Atta, E.M. (2019). Antimicrobial Activity of Hybrids Terpolymers Based on MagnetiteHydrogel Nanocomposites. Materials Journal. 12(21): 3604.
Shabani, N., Javadi,A., Jafarizadeh Malmiri, H, Mirzaie,H and Sadeghi J. (2020). Potential application of iron oxide nanoparticles synthesized by co-precipitation technology as a coagulant for water treatment in settling tanks Mining, Metallurgy & Exploration.
Shazia,P., Wania, A.H., Shahb,M. A., Devib, H. S., Bhata, M.Y. and Abdullah, J.(2018). Characterization and antifungal activity of iron oxide nanoparticles. Microbial Pathogenesis, 115 287–292.
Shabani L.N., Shayegh. J and Sadegh. j. (2018). Frequency of blaTEM ،blaSHV, and blaCTX-M genes encoded extended-spectrum betalactamases in Escherichia coli isolates collected from groundwater in East Azerbaijan province in 2014. Med J Tabriz Uni Med Sciences Health Services, 40(2):57-63.
Thukkaram, M., Sitaram, S. K., annaiyan, S. K., Subbiahdoss, G. (2014). Antibacterial Efficacy of Iron-Oxide Nanoparticles against Biofilms on Different Biomaterial Surfaces. Biomaterials science and engineering, Article ID 716080, 6.
Vogel, T.M., Criddle, C.S., McCarty, P.L. (1987). Transformations of halogenated aliphatic compounds. Environmental science & technology. 21(8): 722-736.
Zomorodian,K., Veisi,H., Mousavi, S.M., Sadeghi Ataabadi, M., Yazdanpanah, S. andBagheri,J.(2018). Modified magnetic nanoparticles by PEG-400-immobilized Agnanoparticles (Fe O@PEG–Ag) as a core/shell nanocomposite andevaluation of its antimicrobial activity. International Journal of Nanomedicine, 13: 3965–3973.