تحلیل عملکرد محدودکننده ترکیبی مبدلهای منبع ولتاژ در حضور سطح کنترل دوم ریزشبکههای جزیرهای
الموضوعات :
1 - مرکز تحقیقات ریزشبکههای هوشمند، دانشگاه آزاد اسلامی واحد نجفآباد
دانشکده مهندسی برق، دانشگاه آزاد اسلامی واحد نجف آباد
الکلمات المفتاحية: انتگرالگیری مشروط, ریزشبکه اینورتری, کنترل سلسله مراتبی, قاب مرجع فاز, محدودسازی,
ملخص المقالة :
با افزایش ظرفیت و تعداد منابع انرژی پراکنده، حفظ اتصال این منابع در حین وقوع اختلالات ضروری است. از جمله اقداماتی که برای این منظور باید انجام شوند، فراهم کردن ولتاژ با کیفیت مطلوب برای تغذیه بارهای مهم و محدوسازی جریان و ولتاژ منابع مبتنی بر مبدلهای الکترونیک قدرت در حین خطا است. این مقاله به بررسی عملکرد ساختار متداول کنترل سلسله مراتبی ریزشبکههای جزیرهای در حین و پس از رفع خطا میپردازد. در سطح کنترل اول این ساختار از محدودکننده ترکیبی برای محدودسازی جریان و ولتاژ مبدل استفاده شده است. اثر استفاده از مفهوم کنترل مستقل هر فاز در سطوح کنترل اول و دوم ریزشبکه در بهبود عملکرد ریزشبکه در حین خطا و اثر استفاده از روش انتگرالگیری مشروط در کنترلکننده ولتاژ سطح کنترل دوم در ارتقاء عملکرد ریزشبکه پس از رفع خطا بررسی شده است. نتایج این مطالعه با شبیهسازی زمانی خطاهای متقارن و نامتقارن نشان داده شده است.
[1] D.P. Mishra, S.R. Samantaray, G. Joos, “A combined wavelet and data-mining based intelligent protection scheme for microgrid”, IEEE Trans. Smart Grid, Vol. 7, No. 5, pp. 2295-2304, Sep. 2016.
[2] I. Sadeghkhani, “Management of inverter-based microgrids performance during and after short-circuit and overload faults,” Ph.D. dissertation, Dept. Elect. Comp. Eng., Isfahan Univ. Tech., Isfahan, Iran, Jan. 2017. (in Persian)
[3] M. Monfared, S. Golestan, J. Guerrero, “Analysis, design, and experimental verification of a synchronous reference frame voltage control for single-phase inverters”, IEEE Trans. on on Industrial Electronics, Vol. 61, No. 1, pp. 258–269, Jan. 2014.
[4] M. Zamani, A. Yazdani, T. Sidhu, “A communication-assisted protection strategy for inverter-based medium-voltage microgrids”, IEEE Trans. Smart Grid, Vol. 3, No. 4, pp. 2088–2099, Dec. 2012.
[5] J.M. Guerrero, J.C. Vasquez, J. Matas, L.G. de Vicuña, M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids—A general approach toward standardization”, IEEE Trans. on Industrial Electronics, Vol. 58, No. 1, pp. 158–172, Jan. 2011.
[6] A. Bidram, A. Davoudi, “Hierarchical structure of microgrids control system”, IEEE Trans. Smart Grid, Vol. 3, No. 4, pp. 1963–1976, Dec. 2012.
[7] A. Milczarek, M. Malinowski, J.M. Guerrero, “Reactive power management in islanded microgrid—Proportional power sharing in hierarchical droop control”, IEEE Trans. Smart Grid, Vol. 6, No. 4, pp. 1631–1638, Jul. 2015.
[8] N. Bottrell, T.C. Green, “Comparison of current-limiting strategies during fault ride-through of inverters to prevent latch-up and wind-up”, IEEE Trans. on Power Electroncs, Vol. 29, No. 7, pp. 3786–3797, Jul. 2014.
[9] A. Plet, M. Graovac, T.C. Green, R. Iravani, “Fault response of grid-connected inverter dominated networks”, Proceeding of the in Proc. IEEE/PES, pp. 1-8, Providence, RI, USA, July 2010.
[10] M.A. Haj-Ahmed, M.S. Illindala, “The influence of inverter-based DGs and their controllers on distribution network protection”, IEEE Trans. on Industry Applications, Vol. 50, No. 4, pp. 2928–2937, Jul./Aug. 2014.
[11] M.S. Golsorkhi Esfahani, D.D.C. Lu, “A decentralized control method for islanded microgrids under unbalanced conditions”, IEEE Trans. on Power Delivery, Vol. 31, No. 3, pp. 1112-1121, June 2016.
[12] I. Ngamroo, T. Karaipoom, “Improving low-voltage ride-through performance and alleviating power fluctuation of DFIG wind turbine in DC microgrid by optimal SMES with fault current limiting function”, IEEE Trans. on Applied Superconductivity, Vol. 24, No. 5, pp. 1–5, Oct. 2014.
[13] W. Lee, J. Sim, K.B. Park, I.S. Oh, “Practical application issues of superconducting fault current limiters for electric power systems”, IEEE Trans. on Applied Superconductivity, vol. 18, no. 2, pp. 620–623, Jun. 2008.
[14] S. Beheshtaein, M. Savaghebi, J.M. Guerrero, J.C. Vasquez, “A secondary-control based fault current limiter for four-wire three phase inverter-interfaced DGs”, Proceeding of the IEEE/IECON, Beijing, China, Nov. 2017.
[15] I. Sadeghkhani, M. Hamedani Golshan, J. Guerrero, A. Mehrizi-Sani, “A current limiting strategy to improve fault ride-through of inverter interfaced autonomous microgrids”, IEEE Trans. Smart Grid, Vol. 8, No. 5, pp. 2138-2148, Sep. 2017.
[16] J.A. Peas Lopes, C. Moreira, A. Madureira, “Defining control strategies for microgrids islanded operation”, IEEE Trans. on Power System, Vol. 21, No. 2, pp. 916–924, May 2006.
[17] M.E. Baran, I. El-Markaby, “Fault analysis on distribution feeders with distributed generators”, IEEE Trans. on Power System, Vol. 20, No. 4, pp. 1757–1764, Nov. 2005.
[18] C.T. Lee, C.C. Chu, P.T. Cheng, “A new droop control method for the autonomous operation of distributed energy resource interface converters,” IEEE Trans. on Power Electroncs, Vol. 28, No. 4, pp. 1980–1993, April 2013.
[19] I. Usunariz, M. Santamaria, K. Mentesidi, M. Aguado, “A modified control scheme of droop-based converters for power stability analysis in microgrids”, Journal of Solar Energy, Vol. 2015, Article ID 393527, 2015.
[20] A. Ghoshal, V. John, “Anti-windup schemes for proportional integral and proportional resonant controller”, Proceeding of the NPEC, 2010.
[21] “IEEE recommended practice and requirements for harmonic control in electric power systems”, IEEE Std 519-2014 (Revision of IEEE Std 519-1992), pp. 1–29, Jun. 2014.
_||_