فهرس المقالات behzad soltani


  • المقاله

    1 - The effect of carbon nanotube waviness and aspect ratio on the buckling of cross-ply laminated FG-CNTRC plates using EFG Method
    International Journal of Advanced Design and Manufacturing Technology , العدد 1 , السنة 9 , زمستان 2016
    This article deals with the buckling analysis of perfectly bonded cross-ply laminated composite plates reinforced by wavy carbon nanotubes (CNTs) under in-plane loads using element free Galerkin (EFG) method based on first-order shear deformation theory (FSDT). The wavy أکثر
    This article deals with the buckling analysis of perfectly bonded cross-ply laminated composite plates reinforced by wavy carbon nanotubes (CNTs) under in-plane loads using element free Galerkin (EFG) method based on first-order shear deformation theory (FSDT). The wavy single-walled CNTs and Poly-co-vinylene are used for the fibers and the matrix, respectively. The CNT fibers are distributed in the polymer matrix in four types of arrangements in each layer. The material properties of the laminated nanocomposite plates are estimated through a micromechanical model based on the extended rule of mixture. The minimum potential energy approach is utilized to obtain the governing equations and the stiffness matrices. Full transformation approach is employed to enforce essential boundary conditions. The accuracy and convergency of the EFG method is established by comparing the obtained results with available literature. Then, the effects of CNT volume fraction and waviness, aspect ratio and distribution type of CNTs as well as plate aspect ratio, plate width-to-thickness ratio and boundary conditions on the buckling behaviour of cross-ply laminated functionally graded carbon nanotube reinforced composite (FG-CNTRC) plates are investigated. The numerical results show that the CNT waviness and aspect ratio have significant effects on the buckling behaviour of FG-CNTRC plates. تفاصيل المقالة

  • المقاله

    2 - The Effect of Elastic Foundations on the Buckling Behavior of Functionally Graded Carbon Nanotube-Reinforced Composite Plates in Thermal Environments Using a Meshfree Method
    Journal of Solid Mechanics , العدد 2 , السنة 8 , بهار 2016
    The buckling behavior of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates resting on Winkler-Pasternak elastic foundations under in-plane loads for various temperatures is investigated using element-free Galerkin (EFG) method based on first-ord أکثر
    The buckling behavior of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates resting on Winkler-Pasternak elastic foundations under in-plane loads for various temperatures is investigated using element-free Galerkin (EFG) method based on first-order shear deformation theory (FSDT). The modified shear correction factor is used based on energy equivalence principle. Carbon nanotubes (CNTs) are embedded in polymer matrix and distributed in four types of arrangements. The temperature-dependent material properties of an FG-CNTRC plate are assumed to be graded along the thickness direction of the plate and estimated through a micromechanical model based on the extended rule of mixture. Full transformation approach is employed to enforce essential boundary conditions. The modified shear correction factor is utilized based on energy equivalence principle involving the actual non-uniform shear stress distribution through the thickness of the FG-CNTRC plate. The accuracy and convergency of the EFG method is established by comparing the obtained results with available literature. Moreover, the effects of elastic foundation parameters are investigated for various boundary conditions, temperatures, plate width-to-thickness and aspect ratios, and CNT distributions and volume fractions. Detailed parametric studies demonstrate that the elastic foundation parameters, CNT distributions along the thickness direction of the plate and the temperature change have noticeable effects on buckling behavior of carbon nanotube-reinforced composite (CNTRC) plates. تفاصيل المقالة

  • المقاله

    3 - Analysis of Rectangular Stiffened Plates Based on FSDT and Meshless Collocation Method
    Journal of Solid Mechanics , العدد 4 , السنة 9 , تابستان 2017
    In this paper, bending analysis of concentric and eccentric beam stiffened square and rectangular plate using the meshless collocation method has been investigated. For detecting the governing equations of plate and beams, Mindlin plate theory and Timoshenko beam theory أکثر
    In this paper, bending analysis of concentric and eccentric beam stiffened square and rectangular plate using the meshless collocation method has been investigated. For detecting the governing equations of plate and beams, Mindlin plate theory and Timoshenko beam theory have been used, respectively, with the stiffness matrices of the plate and the beams obtained separately. The stiffness matrices of the plate and the beams were combined together using transformation equations to obtain a total stiffness matrix. Being independent of the mesh along with its simpler implementation process, compared to the other numerical methods, the meshless collocation method was used for analyzing the beam stiffened plate. In order to produce meshless shape functions, radial point interpolation method was used where moment matrix singularity problem of the polynomial interpolation method was fixed. Also, the Multiquadric radial basis function was used for point interpolations. Used to have solutions of increased accuracy and stability were polynomials with the radial basis functions. Several examples are presented to demonstrate the accuracy of the method used to analyze stiffened plates with the accuracy of the results showing acceptable accuracy that the employed method in analyzing concentric and eccentric beam stiffened square and rectangular plates. تفاصيل المقالة