فهرس المقالات hamed raeiesifard


  • المقاله

    1 - Effect of Deposition Time on the Morphological Features and Structure of DLC Coatings on Aluminuim-T6 by PACVD
    International Journal of Advanced Design and Manufacturing Technology , العدد 62 , السنة 16 , بهار 2023
    Diamond like Carbon (DLC) was deposited on aluminum substrate using Plasma Assisted Chemical Vapor Deposition (PACVD) route. Spattering, the surface was activated before deposition for increasing adhesion. Deposition time was varied from 60 minutes to 5 hours. Deposit w أکثر
    Diamond like Carbon (DLC) was deposited on aluminum substrate using Plasma Assisted Chemical Vapor Deposition (PACVD) route. Spattering, the surface was activated before deposition for increasing adhesion. Deposition time was varied from 60 minutes to 5 hours. Deposit was characterized using with grazing incidence X-ray diffraction and atomic force microscope. The mechanical property was measured using microhardness and roughness tester. The analysis showed that the deposit consisted of columnar growth of submicron and micron meter scale. Compared to substrate material, deposit showed higher hardness and roughness. These results show that growth of DLC layer includes three stages. The first stage is primary growth of nuclei, and then these nuclei join together in second stage. In third stage, secondary growth of these nuclei happens. تفاصيل المقالة

  • المقاله

    2 - Characterization of DLC Thin Films Deposited by DC-Pulsed PACVD using Methane Precursor
    International Journal of Advanced Design and Manufacturing Technology , العدد 58 , السنة 15 , زمستان 2024
    In this work, Diamond Like Carbon (DLC) thin films were deposited on aluminum alloy 6061 by Plasma-Assisted Chemical Vapor Deposition (PACVD). Nitiding prior to coated leads to appropriate hardness gradient and it can greatly improve the mechanical properties of the coa أکثر
    In this work, Diamond Like Carbon (DLC) thin films were deposited on aluminum alloy 6061 by Plasma-Assisted Chemical Vapor Deposition (PACVD). Nitiding prior to coated leads to appropriate hardness gradient and it can greatly improve the mechanical properties of the coatings. The composition, crystalline structure and phase of the films were investigated by Grazing Incidence X-ray Diffraction (GIXRD). Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) were employed to observe the morphology and structure of the film. The DLC layer exhibited a columnar structure. The adhesion force between the film and the aluminum alloy 6061 was 30.8 Mpa. The DLC film was determined by the pull of test. The hardness of the DLC film was 12.75 Gpa. The improvement of the adhesion DLC was attributed to a less gradient hardness configuration. In addition, the mean friction coefficient of the films was about 0.2 determined by nanoindentation test. According to the results, the high and unique hardness of this coating leads to increase of the wear resistance and thus the useful life of parts. تفاصيل المقالة

  • المقاله

    3 - Raman Analysis of DLC Nanostructure Coating on AL 6061-T6 Made by DC Pulsed- PACVD
    Journal of Modern Processes in Manufacturing and Production , العدد 4 , السنة 11 , تابستان 2022
    Plasma assisted chemical vapor deposition (PACVD) technique was used to make a diamond-like carbon (DLC) coating on the Aluminum 6061- T6 substrate. The deposition was carried out using CH4 as the process gas, at different temperatures, 250°C and 300°C with cons أکثر
    Plasma assisted chemical vapor deposition (PACVD) technique was used to make a diamond-like carbon (DLC) coating on the Aluminum 6061- T6 substrate. The deposition was carried out using CH4 as the process gas, at different temperatures, 250°C and 300°C with constant power and flow rate. Characterization technique Raman spectroscopy was used to characterize these samples. Raman analysis of DLC coatings at different temperatures is carried out in detail for two different excitation wavelengths i.e. 514 and 785 nm and, results are presented in the paper. Blue shifts were observed in both D and G peaks of the Raman spectrum with an increase in deposition temperature, which indicates the formation of compressive strain in high-temperature deposited DLC coatings. Dispersion in both D and G peaks is observed for different excitation wavelengths suggesting that the coating is hydrogenated DLC. The degree of hydrogenation of the DLC coating appears to decrease for the deposition temperature. Nano-indentation study shows a marginal increase in hardness with an increase in deposition temperature. تفاصيل المقالة