فهرس المقالات Rita John


  • المقاله

    1 - Properties of sol-gel synthesized multiphase TiO2 (AB)-ZnO (ZW) semiconductor nanostructure: An effective catalyst for methylene blue dye degradation
    Iranian Journal of Catalysis , العدد 1 , السنة 10 , زمستان 2020
    The present study, describes the structural, electrical, and the photocatalytic activity of sol-gel synthesized TiO2- ZnO nanostructure. The synthesized mixed oxide nanostructure is characterized by XRD, FTIR, Raman, UV-Vis, FESEM, DLS and Impedance Spectroscopy analyse أکثر
    The present study, describes the structural, electrical, and the photocatalytic activity of sol-gel synthesized TiO2- ZnO nanostructure. The synthesized mixed oxide nanostructure is characterized by XRD, FTIR, Raman, UV-Vis, FESEM, DLS and Impedance Spectroscopy analyses. In addition, photocatalytic activity of multiphase TiO2 (TAB)-ZnO (ZW) nanostructure is analysed using Methylene Blue dye as the model dye under UV and Visible light illumination. The XRD analysis confirms the bi-phase TiO2 and mono-phase ZnO in the multiphase TiO2-ZnO nanostructures. The average crystallite size of 33 nm has been estimated using Scherrer formula. The crystallite size and mechanical properties such as strain, stress, and other parameters are analysed using Williamson-Hall model. The FTIR spectrum shows the characteristics absorption peaks of TiO2 and ZnO at 679.44 and 432.79 cm-1 respectively, and reveals the presence of TiO2 and ZnO in the synthesized multiphase nanostructure. The optical band gap is calculated using Tauc relation with the data obtained from UV-Vis spectrometer. The calculated band gap value is 3.1 eV. The FESEM study shows the spherical morphology and the DLS analysis confirms the particle size is 433 nm. The presence of Ti-O and Zn–O stretching modes are confirmed from Raman spectrum. The electrical properties such as dielectric constant, dielectric loss, and ac conductivity are analysed from impedance data. The prepared multiphase TiO2 (TAB)-ZnO (ZW) nanostructure shows better photocatalytic activity in both UV and visible light region. The rate constant has been calculated as 0.0083 and 0.0052 min-1 for UV and visible light irradiation. تفاصيل المقالة

  • المقاله

    2 - Optical, Morphological and Microstructural Investigation of TiO2 nanoparticles for Photocatalytic application
    Iranian Journal of Catalysis , العدد 1 , السنة 11 , زمستان 2021
    Enriched characteristics like porosity, stability and specific surface area assist TiO2 to find extensive applications in photocatalysis, dye sensitized solar cell, and sensors. TiO2 semiconductor was prepared using titanyl acetylacetonate and characterized by XRD, FTIR أکثر
    Enriched characteristics like porosity, stability and specific surface area assist TiO2 to find extensive applications in photocatalysis, dye sensitized solar cell, and sensors. TiO2 semiconductor was prepared using titanyl acetylacetonate and characterized by XRD, FTIR, Raman, UV-Vis, FESEM, EDX, and DLS. XRD result confirmed the tetragonal structured anatase TiO2 semiconductor. Scherrer formula is used to calculate crystallite size and the obtained value is 6.81 nm. Microstrain, stress, energy density, and crystallite size are calculated using W-H model. The absorption peak of TiO2 is observed at 652.11 cm-1 from FTIR spectrum and authenticated the anatase TiO2 semiconductor. The UV absorption edge is identified at 365 nm and the bandgap is calculated from the Kubelka-Munk equation using Tauc plot. Raman spectrum show bands at 140,197, 395, 512, and 635 cm-1 and these peaks confirmed the presence of the anatase TiO2 stretching mode. FESEM micrographs exhibited agglomerated spherical morphology and the particle size was further analysed using DLS study. The elemental compositions were identified in the EDX analysis. The obtained spectrum showed 55.88 Wt% of O and 44.12 Wt% of Ti atoms. The prepared anatase TiO2 semiconductor indicated enhanced catalytic behaviour. The rate constants and half life time are related to crystallite size using mathematical relation. It is found that the degradation process varies with crystallite size. تفاصيل المقالة