فهرس المقالات کاظم مهانپور


  • المقاله

    1 - Preparation and Characterization of Nano ZnFe2O4 Supported on Copper Slag and its Effects on the Degradation of p-Xylene Aqueous Solution
    Journal of Applied Chemical Research , العدد 1 , السنة 14 , زمستان 2020
    One of the problems in removing pollutants from water by photocatalytic methodsistheseparationof thecatalystfrom thesolution. In this study, the catalyst stabilization method was used to solve this problem. Nano ZnFe2O4 supported on Copper Slag (CS) produced in this res أکثر
    One of the problems in removing pollutants from water by photocatalytic methodsistheseparationof thecatalystfrom thesolution. In this study, the catalyst stabilization method was used to solve this problem. Nano ZnFe2O4 supported on Copper Slag (CS) produced in this research is an environment-friendly, simple and cost-effective catalyst. ZnFe2O4 was prepared for co-precipitation methods and supported on CS by the thermal process. Its characterization was done by scanning electron microscopy (SEM) images, energy-dispersive X-ray spectroscopy (EDX), BET surface area and X-Ray diffraction patterns (XRD). The degradation of p-Xylene as a pollutant in water was performed by the UV + H2O2 process using ZnFe2O4/CS as a photocatalyst. Circulate Packed Bed Reactor (CPBR) was used. For photocatalytic degradation of the p-Xylene, full factorial experimental design with three factors containing pH, the initial concentration of p-Xylene and H2O2 in three levels was used. The best conditions were determined as pH= 9, the concentration of p-Xylene= 70 ppm and concentration of H2O2= 20 ppm. Degradation efficiency in the best condition was 95.40 %. This new catalyst can also be used in processes for organic pollutant degradation. تفاصيل المقالة

  • المقاله

    2 - Employing α-Fe2O3 /Mn2P2O7 as a nano photocatalyst for degradation of toluene in aqueous environment
    Journal of Nanoanalysis , ستأتي المقالات قريبًا
    The existence of different resistant organic pollutants especially toxic organic aromatics such as Toluene in aquatic environments has become a significant environmental matter in recent years. In this paper, α-Fe2O3 Nano-spheres are immobilized on the surface of Mangan أکثر
    The existence of different resistant organic pollutants especially toxic organic aromatics such as Toluene in aquatic environments has become a significant environmental matter in recent years. In this paper, α-Fe2O3 Nano-spheres are immobilized on the surface of Manganese Pyrophosphate (Mn2P2O7) support using Forced Hydrolysis and Reflux Condensation (FHRC) method. Products were characterized by FTIR, SEM, BET EDX, and XRD. The photocatalytic activity of α-Fe2O3/Mn2P2O7 was investigated for the removal of Toluene in aqueous solution by UV/H2O2 system. The chemical oxygen demand (COD) measurements were used to determine the amount of Toluene removal. The experiments were designed based on four affecting variables including pH, catalyst content, initial Toluene concentration and H2O2 at three levels using Box-Behnken experimental design. The results of this study showed that α-Fe2O3/Mn2P2O7 as a new photo catalyst has a higher photocatalytic activity than α-Fe2O3 nanoparticles. Based on the achieved results, the maximum degradation efficiency was 97.14% in optimal conditions. تفاصيل المقالة

  • المقاله

    3 - Modeling the degradation of Sunset Yellow FCF azo dye by Fe2O3/Bentonite catalyst using artificial neural networks
    Journal of Nanoanalysis , العدد 4 , السنة 8 , تابستان 2021
    In this paper, the precipitation method has been used to stabilize Fe2O3 particleson Bentonite zeolite (BEN). Fe2O3/BEN catalysts have been characterized byscanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) surface area analysi أکثر
    In this paper, the precipitation method has been used to stabilize Fe2O3 particleson Bentonite zeolite (BEN). Fe2O3/BEN catalysts have been characterized byscanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) surface area analysis. Artificial neural network (ANN)was used for modeling the photocatalytic degradation of Sunset Yellow FCF(SYF) azo dye in aqueous solution under irradiation in the batch photoreactor.The parameters including pH, catalyst amount, dye concentration and H2O2concentration was applied as input; the output of the network was degradationpercentage. Modeling the results of the photocatalytic degradation of dye using afeed-forward, backpropagation three-layer network, topology (4:7:1) with fourneurons in the input layer, seven neurons in the hidden layer, and one neuron inthe output layer was used. Comparison between data obtained from ANN andexperimental data indicated that the proposed ANN model provides reasonablepredictive performance. The optimum conditions were as follows: pH= 4, catalystamount=60 mg/L, dye concentration =50 ppm and H2O2 concentration =32ppm. The chemical oxygen demand (COD) analysis of the dye under optimumconditions showed a 91% reduction in 80 min period. تفاصيل المقالة

  • المقاله

    4 - Employing α-Fe2O3 /Mn2P2O7 as a nano photocatalyst for degradation of toluene in aqueous environment
    Journal of Nanoanalysis , العدد 5 , السنة 6 , پاییز 2019
    In this study, α-Fe2O3 nano-spheres are immobilized on the surface of manganese pyrophosphate(Mn2P2O7) support using forced hydrolysis and reflux condensation (FHRC) method. The synthesizedα-Fe2O3/Mn2P2O7 were characterized by FTIR, SEM, BET EDX, and XRD. Th أکثر
    In this study, α-Fe2O3 nano-spheres are immobilized on the surface of manganese pyrophosphate(Mn2P2O7) support using forced hydrolysis and reflux condensation (FHRC) method. The synthesizedα-Fe2O3/Mn2P2O7 were characterized by FTIR, SEM, BET EDX, and XRD. The photocatalytic activity fromα-Fe2O3/Mn2P2O7 was investigated for the removal of toluene in aqueous solution by UV/H2O2 system. Thechemical oxygen demand (COD) measurements were used to determine the amount of toluene removal.The experiments were designed based on four affecting variables, including pH, catalyst content, initialtoluene concentration and H2O2 at three levels using Box-Behnken experimental design. The results ofthis study showed that α-Fe2O3/Mn2P2O7 as a new photocatalyst has a higher photocatalytic activity thanα-Fe2O3 nanoparticles. Based on the achieved results, the maximum degradation efficiency was 97.14%in optimal conditions. تفاصيل المقالة

  • المقاله

    5 - Preparation of ZnO nanocatalyst supported on todorokite and photocatalytic efficiency in the reduction of chromium (VI) pollutant from aqueous solution
    Iranian Journal of Catalysis , العدد 4 , السنة 9 , تابستان 2019
    In this research, a new effective photocatalyst was prepared by supporting ZnO on a Todorokite (TD). This catalyst was characterized by employing scanning electron microscopy (SEM-EDX) and X-Ray Diffraction (XRD) patterns. The optical properties of the samples were meas أکثر
    In this research, a new effective photocatalyst was prepared by supporting ZnO on a Todorokite (TD). This catalyst was characterized by employing scanning electron microscopy (SEM-EDX) and X-Ray Diffraction (XRD) patterns. The optical properties of the samples were measured by diffuse reflectance spectroscopy (DRS). The purpose of using the ZnO/TD as a photocatalyst was to reduction Cr(VI), which is a pollutant in water. Experiments were carried out under different operating conditions including an initial concentration of Cr(VI), photocatalyst amounts and pH values. To optimize processes and obtain a mathematical model, the researcher used a full factorial design (with three factors at three levels). The optimal conditions were determined where the amount of photocatalyst= 200 mg L-1, pH= 2 and concentration of Cr(VI)= 15 ppm. The reduction efficiency in an optimal condition was 97.73%. The experimental results showed that kinetic was the first order and k= 0.1489 min–1. تفاصيل المقالة

  • المقاله

    6 - Preparation of α-Fe2O3 Nano-photocatalyst supported on Cd(II)-Terephthalic MOF for photocatalytic removal of Cefazolin aqueous solution
    Iranian Journal of Catalysis , العدد 2 , السنة 11 , بهار 2021
    The main purpose of this study was to investigate the photocatalytic decomposition of the antibiotic Cefazolin (CFZ) from aqueous solutions using a new effective catalyst. This catalyst was made of α-Fe2O3-supported nanoparticles on a metal-organic framework (MOF) أکثر
    The main purpose of this study was to investigate the photocatalytic decomposition of the antibiotic Cefazolin (CFZ) from aqueous solutions using a new effective catalyst. This catalyst was made of α-Fe2O3-supported nanoparticles on a metal-organic framework (MOF). The synthesis of Nano α-Fe2O3 photocatalyst was performed by the reflux condensation method. The MOF was synthesized using Cadmium nitrate and Terephthalic acid and Nano α-Fe2O3 supported on MOF using a solid-state distribution (SSD) method. FTIR, XRD, SEM, EDX, N2 adsorption-desorption and TGA technique were used for the identification of the catalyst. Analysis of these results revealed that α-Fe2O3 circular nanoparticles bonded together and occupy a large area on the MOF crystal surfaces. The BET surface area and the pore diameter of ​​the catalyst obtained were 479 m2g-1 and 3.86 nm respectively. UV/H2O2 photocatalytic processes were applied for the decomposition of CFZ from aqueous solutions. This process was optimized and modeled using the full factorial method. Initial concentrations of CFZ, pH, α-Fe2O3/MOF amounts and initial concentration of H2O2 were the variables for the determination of optimal conditions and mathematical models. The highest degradation percentage of CFZ in the optimum condition (CFZ=30 ppm, pH=8, H2O2=5ppm, catalyst=150mg.l-1) was 85.88%. This photocatalyst reaction has pseudo-first-order kinetic with a constant rate of 0.0752 min-1 and it also matched the Langmuir–Hinshelwood model. تفاصيل المقالة