فهرس المقالات Amir Jasemi


  • المقاله

    1 - Potential of magnetite nanoparticles with biopolymers loaded with gentamicin drug for bone cancer treatment
    Journal of Nanoanalysis , ستأتي المقالات قريبًا
    Objective (s) Due to the natural bone microstructure, the design and fabrication of porous ceramic scaffold nanocomposite materials coated with thin layer of a natural polymer can provide an ideal scaffold for bone tissue engineering. This study aimed to fabricate multi أکثر
    Objective (s) Due to the natural bone microstructure, the design and fabrication of porous ceramic scaffold nanocomposite materials coated with thin layer of a natural polymer can provide an ideal scaffold for bone tissue engineering. This study aimed to fabricate multi-component porous magnetic scaffolds by freeze- drying (FD) technique using a gelatin polymer layer coated with a gentamicin drug. Materials and Methods: Magnetic nanoparticles (MNPs) can be manipulated and controlled by an external magnetic field gradient (EMFG) that is inherent in the magnetic field's permeability within human tissues. In the present work, unlike the usual ceramic/polymer composite scaffold, the ceramic components and the magnet were placed together in the reaction medium from the beginning, and bioceramics were replaced in the composite polymer network and then coated with a drug-loaded polymer. To evaluate the morphology of the magnetic scaffold, scanning electron microscopy (SEM) was utilized to evaluate the microstructure and observe the porosity of the porous tissue. Results and Discussion: After analyzing the SEM images, the porosity of the scaffolds was measured, which was similar to the normal bone architecture. Also, the porosity value increased from 55% to 78% with addition of MNPs to the based matrix. Conclusion: The results of this study showed that gentamicin-gelatin-coated on porous ceramic-magnet composite scaffolds could be used in bone tissue engineering and apply for treatment of bone tumors, because of their similarity to the bone structure with good porosity. تفاصيل المقالة

  • المقاله

    2 - Potential of magnetite nanoparticles with biopolymers loaded with gentamicin drug for bone cancer treatment
    Journal of Nanoanalysis , العدد 4 , السنة 8 , تابستان 2021
    Objective(s): Due to the natural bone microstructure, the design and fabrication ofporous ceramic scaffold nanocomposite materials coated with a thin layer of a naturalthe polymer can provide an ideal scaffold for bone tissue engineering. This study aimed tofabricate mu أکثر
    Objective(s): Due to the natural bone microstructure, the design and fabrication ofporous ceramic scaffold nanocomposite materials coated with a thin layer of a naturalthe polymer can provide an ideal scaffold for bone tissue engineering. This study aimed tofabricate multi-component porous magnetic scaffolds by freeze-drying (FD) techniqueusing a gelatin polymer layer coated with a gentamicin drug.Methods: Magnetic nanoparticles (MNPs) can be manipulated and controlled byan external magnetic field gradient (EMFG) that is inherent in the magnetic field'spermeability within human tissues. In the present work, unlike the usual ceramic/polymer composite scaffold, the ceramic components, and the magnet were placedtogether in the reaction medium from the beginning, and bioceramics were replacedin the composite polymer network and then coated with a drug-loaded polymer. Toevaluate the morphology of the magnetic scaffold, scanning electron microscopy(SEM) was utilized to evaluate the microstructure and observe the porosity of theporous tissue.Results: After analyzing the SEM images, the porosity of the scaffolds was measured,which was similar to the normal bone architecture. The addition of gentamicin tothe gelation was investigated to monitor the drug delivery reaction in the biologicalenvironment. The magnetic properties of the sample were evaluated using thehyperthermia test for 15 seconds at the adiabatic conditions. Also, the porosity valueincreased from 55% to 78% with the addition of MNPs to the based matrix.Conclusions: The results of this study showed that gentamicin-gelatin-coated onporous ceramic-magnet composite scaffolds could be used in bone tissue engineeringand apply for treatment of bone tumors, because of their similarity to the bonestructure with good porosity. تفاصيل المقالة