ارزش غذایی، ساختارهای مولکولی FTIR، غلضت سموم قارچی و عناصر سنگین انگور رقم بیدانه سفید در سه مرحله قوره، رسیده و کشمش در نشخوارکنندگان
Subject Areas : Camelم. یاری 1 , م. منافی 2 , م. هدایتی 3 , ر. کریمی 4 , ر. ولیزاده 5 , آ. جنکر 6
1 - Department of Animal Science, College of Agriculture, Malayer University, Malayer, Iran|Iranian Grape and Raisin Institute, Malayer University, Malayer, Iran
2 - Department of Animal Science, College of Agriculture, Malayer University, Malayer, Iran
3 - Department of Animal Science, College of Agriculture, Malayer University, Malayer, Iran
4 - Iranian Grape and Raisin Institute, Malayer University, Malayer, Iran|Department of Landscape Engineering, College of Agriculture, Malayer University, Malayer, Iran
5 - Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
6 - Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
Keywords: نشخوارکنندگان, سموم قارچی, ارزش انرژی, ساختارهای مولکولی FTIR, محصولات انگور, کینتیکهای تولید گاز,
Abstract :
انگور و محصولات بدست آمده از آن به خاطر مصرف در تغذیه انسان، اهمیت فراوانی در دنیا دارند. با این وجود، این محصولات ممکن است گاهی اوقات به دلیل قیمت و کیفیت پایین در تغذیه نشخوارکنندگان استفاده شود. اهداف این پژوهش تعیین ارزش غذایی انگور رقم بیدانه سفید در سه مرحله غوره (خوشه کامل)، رسیده (خوشه کامل)، و کشمش برای نشخوارکنندگان به صورت اندازهگیری ترکیب شیمیایی و ویژگیهای تخمیرپذیری به روش تولید گاز در محیط آزمایشگاهی، بررسی ساختار مولکولی با استفاده از روش FTIR (اسپکتروسکوپی مادون قرمز با تبدیل فوریه) و آلودگیهای عناصر سنگین و سموم قارچی بود. در مقایسه با انگور رسیده و کشمش، غوره نسب نیتروژن به کربوهیدارت، فنول و تانن کل بیشتری داشت (05/0>P) و بیشترین ناحیه پیک مربوط به ترکیبات فنولی و کربوهیدارتهای ساختاری در بررسی FTIR مربوط به میوه غوره بود (05/0>P). کشمش تولید گاز تجمعی بیشتری در 24 ساعت از انکوباسیون داشت (05/0>P). مقادیر آفلاتوکسین B1، B2، G1 و G2 و آکراتوکسین A در میوه غوره و رسیده ناچیز بود در صورتیکه مقادیر کمی در کشمش مشاهده شد (05/0>P). غلظت سرب در میوه غوره و کشمش کمتر از میوه رسیده بود (05/0>P). در نتیجه، ترکیبات فنولی و تاننها، غلظت سموم قارچی و عناصر سنگین در میوه غوره و رسیده و کشمش انگور بیدانه سفید کمتر از سطوح سمی برای تغذیه در نشخوارکنندگان بود و الگو و قابلیت دسترسی مواد مغذی این محصولات، آنها را به عنوان ماده خوراکی مناسب در جیره نشخوارکنندگان ممکن میسازد.
Alipour D. and Rouzbehan Y. (2007). Effects of ensiling grape pomace and addition of polyethylene glycol on in vitro gas production and microbial biomass yield. Anim. Feed. Sci. Technol. 137, 138-149.
AOAC. (1995). Official Methods of Analysis. Vol. I. 15th Ed. Association of Official Analytical Chemists, Arlington, VA, USA.
Besharati M. and Taghizadeh A. (2009). Evaluation of dried grape by-product as a tanniniferous tropical feedstuff. Anim. Feed. Sci. Technol. 152, 198-203.
Boss P.K. and Davies C. (2001). Molecular biology of sugar and anthocyanin accumulation in grape berries. Pp. 1-33 in Molecular Biology and Biotechnology of the Grapevine. K.A. Roubelakis-Angelakis, Eds. Kluwer Academic Publishers, Dordrecht, The Netherlands.
Corrales M., Toepf S., Butz P., Knorr D. and Tauscher B. (2008). Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innov. Food Sci. Emerg. Technol. 9, 85-91.
Damiran D. and Yu P. (2011). Molecular basis of structural makeup of hulless barley in relation to rumen degradation kinetics and intestinal availability in dairy cattle: a novel approach. J. Dairy Sci. 94, 5151-5159.
Divrikli U., Horzum N., Soylak M. and Elci L. (2006). Trace heavy metal contents of some spices and herbal plants from western Anatolia, Turkey. Int. J. Food Sci. Technol. 41, 712-716.
Fernaandez K. and Agosin E. (2007). Quantitative Analysis of Red Wine Tannins Using Fourier-Transform Mid-Infrared Spectrometry. J. Agric. Food Chem. 55, 7294-7300.
FAO. (2009). Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
FAO. (2003). Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
FAO/WHO. (1999). Expert Committee on Food Additives. Pp. 1-10 in Proc. 53rd Meet. Summ. Concl. Rome, Italy.
FDA. (2011). National Grain and Feed Association. Regulatory Guidance for Mycotoxins. Available at: https://www.ngfa.org/wp-content/uploads.
ICAC. (1995). Iranian Council of Animal Care. Guide to the Care and Use of Experimental Animals. Isfahan University of Technology, Isfahan, Iran.
ISIRI. (2002). Institute of Standards and Industrial Research of Iran. Food and Feed-Mycotoxin-Maximum Tolerated Level. ISIRI No. 5925. Karaj, Iran.
ISIRI. (2012a). Institute of Standards and Industrial Research of Iran. Food and Feed Stuffs: Determination of Aflatoxins B and G by HPLC Method Using Immunoaffinitycolumn Clean up-Test Method. ISIRI No. 6872. Karaj, Iran.
ISIRI. (2012b). Institute of Standards and Industrial Research of Iran. Foodstuffs-Cereal and Cereals Products: Determination of Ochratoxin A by HPLC Method and Immunoaffinity Column Clean up-Test Method. ISIRI No. 9238. Karaj, Iran.
ISIRI. (2012). Institute of Standards and Industrial Research of Iran. Food and Feed-Maximum Limit of Heavy Metals. ISIRI No. 12968. Karaj, Iran.
Karimi R. and Ershadi A. (2015). Role of exogenous abscisic acid in adapting of ‘Sultana’ grapevine to low temperature stress. Acta Physiol. Plan. 37, 151-162.
Keller M. (2010). The Science of Grapevines: Anatomy and Physiology. Academic Press, Burlington, Massachusetts.
Makkar H.P.S. (2000). Quantification of Tannins in Tree Foliage. A Laboratory Manual for the FAO/IAEA Co-Ordinated Research Project on "Use of Nuclear and Related techniques to Develop Simple Tannin Assays for Predicting and Improving the Safety and Efficiency of Feeding Ruminants on Tanniniferous Tree Foliage" Joint FAO/IAEA, FAO/IAEA of Nuclear Techniques in Food and Agriculture, Animal Production and Health Sub-Programme, FAO/IAEA Working Document, International Atomic Energy Agency (IAEA), Vienna, Austria.
Menke K.H. and Steinglass H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Devel. 28, 47-55.
Musingarabwi D.M. (2015). Characterisation of grapevine berry samples with infrared spectroscopy methods and multivariate data analyses tools. MS Thesis. Stellenbosch Univ., Stellenbosch, South Africa.
NRC. (2001). Nutrient Requirements of Dairy Cattle. 7th Ed. National Academy Press, Washington, DC, USA.
Ørskov E.R. and McDonald I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92, 499-503.
Pala M., Saygi Y.B. and Sadikoglu H.A. (1993). Study on the drying of sultana grapes by different techniques and effective parameters. Pp. 437-444 in In Developments in Food Science 32: Food Flavors, Ingredients and Composition. G. Charalambous, ed. Elsevier Science Publishers, Amsterdam, the Netherlands.
Palumbo J.D., O’Keeffe T.L., Vasquez S.J. and Mahoney N.E. (2011). Isolation and identification of ochratoxin A-producing Aspergillus section Nigri strains from California raisins. Lett. Appl. Microbiol. 52, 330-336.
Pitt R.E. (1993). A descriptive model of mold growth and aflatoxin formation as affected by environmental conditions. J Food Prot. 2, 139-146.
Radwan M.A. and Salama A.K. (2006). Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food Chem. Toxicol. 44, 1273-1278.
Rogerio M., Mauricio F.L., Moulda M.S., Dhanoa E.O., Kulwant S. and Michael K.T. (1999). A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Anim. Feed Sci. Technol. 79, 321-330.
Romer T.R., Boling T.M. and Macdonald J.L. (1978). Gas liquid chromatographic determination of T-2 toxin and diacetoxyscirpenol in corn and mixed feeds. J. Assoc. Off. Anal. Chem. 61, 801-807.
SAS Institute. (2003). SAS®/STAT Software, Release 9.2. SAS Institute, Inc., Cary, NC. USA.
Serra R., Mendonça C. and Venâncio A. (2006). Ochratoxin A occurrence and formation in Portuguese wine grapes at various stages of maturation. Int. J. Food Microbiol. 111, 35-39.
Singleton V.L. and Rossi J.A. (1965). Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Viticcult. 16, 144-158.
Sobukola O.P., Adeniran O.M., Odedairo A.A. and Kajihausa O.E. (2010). Heavy metal levels of some fruits and leafy vegetables from selected markets in Lagos, Nigeria. African J. Food Sci. 4, 389-393.
Spanghero M., Salem A.Z.M. and Robinson P.H. (2009). Chemical composition, including secondary metabolites, and rumen fermentability of seeds and pulp of Californian (USA) and Italian grape pomaces. Anim. Feed Sci. Technol. 152, 243-255.
Tavendale M.H., Meagher L.P., Pacheco D., Walker N., Attwood G.T. and Sivakumaran S. (2005). Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicagosativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 123, 403-419.
Tefera S., Mlamboa V., Dlamini B.J., Dlamini A.M., Koralagama K.D.N. and Mould F.L. (2008). Chemical composition and in vitro ruminal fermentation of common tree forages in the semi-arid rangelands of Swaziland. Anim. Feed Sci. Technol. 142, 99-110.
Theodorou M.K., Williams B.A., Dhanoa M.S., McAllan A.B. and France J.A. (1994). Simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48, 185-197.
Van Soest P.J., Robertson J.B. and Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583-3597.
Vivin P., Castelan-Estrada M. and Gaudillere J.P. (2003). Seasonal changes in chemical composition and construction costs of grape vine tissues. Vitis. 42, 5-12.
Waghorn G. (2008). Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-Progress and challenges. Anim. Feed Sci. Technol. 147, 116-139.
Wermelinger B. (1991). Nitrogen dynamics in grapevine: Physiology and modelling. Pp. 23-31 in Proc. Int. Symp. Nitr. Grap. Wine. American Society for Enology and Viticulture, Davis, USA.
Wetzel D.L., Eilert A.J., Pietrzak L.N., Miller S.S. and Sweat J.A. (1998). Ultraspatially-resolved synchrotron infrared microspectroscopy of plant tissue in situ. Cell. Mol. Boil. 44, 145-168.
Yari M., Valizadeh R., Naserian A.A., Jonker A. and P. Yu. (2013). Protein molecular structures in alfalfa hay cut at three stages of maturity and in the afternoon and morning and relationship with nutrient availability in ruminants. J. Sci. Food Agric. 93, 3072-3080.
Yari M., Manafi M., Hedayati M., Khalaji S., Mojtahedi M., Valizadeh R. and Hosseini Ghaffari M. (2015a). Nutritive value of several raisin by-products for ruminants evaluated by chemical analysis and in situ ruminal degradability. Res. Opin. Anim. Vet. Sci. 5, 198-204.
Yari M., Manafi M., Hedayati M., Khalaji S., Valinejad S., Valizadeh R. and Hosseini-Ghaffari A. (2015b). Prediction of energy contents and potential nutrient supply of raisin by-products for ruminants using National Research Council feeding system and in vitro gas production method. Res. Opin. Anim. Vet. Sci. 5, 284-289.
Yari M., Valizadeh R., Naserian A.A., Jonker A., Azarfar A. and Yu P. (2014). Effects of including alfalfa hay cut in the afternoon or morning at three stages of maturity in high concentrations on dairy cows performance, diet digestibility and feeding behaviour. Anim. Feed Sci. Technol. 192, 62-72.
Yu P., McKinnon J.J., Christensen C.R. and Christensen D.A. (2004). Imaging molecular chemistry of Pioneer corn. J. Agric. Food Chem. 52, 7345-7352.
Zaidi M.I., Asrar A., Mansoor A. and Farooqui M.A. (2005). The heavy metal concentrations along roadsides trees of Quetta and its effects on public health. J. Appl. Sci. 5, 708-711.